Crop Yield Prediction

Machine Learning
MARS (earth)
Tuning
Author

Olamide Adu

Published

October 2, 2024

Introduction

This project aims to predict crop yield using Multivariate Adaptive Regression Splines (MARS) implemented with the earth package by Stephen Milborrow. In this project we will walk through data loading, some exploratory data analysis, preprocessing, model specification, tuning, and performance evaluation.

Loading Packages

We’ll load tidymodels, ggthemr, earth and vip packages using pacman’s p_load() function.

Show the code
pacman::p_load(tidymodels, readr, earth, ggthemr, vip)
ggthemr(palette = "fresh", layout = "scientific", spacing = 3)

Data Import

Here, we load the dataset and clean up column names for easier reference. Then, we review the data structure and conduct an initial exploration of its properties. The data was gotten from kaggle data repository. The dataset contains agricultural data for 1,000,000 samples aimed at predicting crop yield (in tons per hectare) based on various factors. The features of the data are:

  • Region: The geographical region where the crop is grown (North, East, South, West).
  • Soil Type: The type of soil in which the crop is planted (Clay, Sandy, Loam, Silt, Peaty, Chalky).
  • Crop: The type of crop grown (Wheat, Rice, Maize, Barley, Soybean, Cotton).
  • Rainfall mm: The amount of rainfall received in millimeters during the crop growth period.
  • Temperature Celsius: The average temperature during the crop growth period, measured in degrees Celsius.
  • Fertilizer Used: Indicates whether fertilizer was applied (True = Yes, False = No).
  • Irrigation Used: Indicates whether irrigation was used during the crop growth period (True = Yes, False = No).
  • Weather Condition: The predominant weather condition during the growing season (Sunny, Rainy, Cloudy).
  • Days to Harvest: The number of days taken for the crop to be harvested after planting.
  • Yield tons per hectare: The total crop yield produced, measured in tons per hectare.
Show the code
crop_yield <- read_csv("data/crop_yield.csv") |> 
  janitor::clean_names()

To get a detailed summary of the data, we use skimr()

Show the code
skimr::skim_without_charts(crop_yield)
Table 1: Data Properties
(a)
Name crop_yield
Number of rows 1000000
Number of columns 10
_______________________
Column type frequency:
character 4
logical 2
numeric 4
________________________
Group variables None

Variable type: character

(b)
skim_variable n_missing complete_rate min max empty n_unique whitespace
region 0 1 4 5 0 4 0
soil_type 0 1 4 6 0 6 0
crop 0 1 4 7 0 6 0
weather_condition 0 1 5 6 0 3 0

Variable type: logical

(c)
skim_variable n_missing complete_rate mean count
fertilizer_used 0 1 0.5 FAL: 500060, TRU: 499940
irrigation_used 0 1 0.5 FAL: 500509, TRU: 499491

Variable type: numeric

(d)
skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100
rainfall_mm 0 1 549.98 259.85 100.00 324.89 550.12 774.74 1000.00
temperature_celsius 0 1 27.50 7.22 15.00 21.25 27.51 33.75 40.00
days_to_harvest 0 1 104.50 25.95 60.00 82.00 104.00 127.00 149.00
yield_tons_per_hectare 0 1 4.65 1.70 -1.15 3.42 4.65 5.88 9.96

The result from Table 1 shows the data is complete.

To ensure proper model performance, we mutate character columns into factors. This prepares the categorical variables for further analysis.

Show the code
crop_yield <- crop_yield |> 
  mutate(
    across(where(is.character), factor)
  )

Exploratory Data Analysis

Let’s explore some of the relationship between the target variables and the predictors.

Show the code
ggplot(
  data = crop_yield, 
  aes(region, y = after_stat(count), fill = crop)
) +
  geom_bar(position = "dodge") +
  coord_flip() +
  labs(
    x = "Count",
    y = "Regions",
    title = "Equal distibution of crops across regions"
  ) +
  theme(
    axis.ticks.x = element_blank()
  )
Warning: The `scale_name` argument of `discrete_scale()` is deprecated as of ggplot2
3.5.0.
Figure 1: Crop frequency across regions is equal. Figure show equal number of replication for the crops across regions

Figure 1 shows that crops are fairly equal in distribution across the regions. The same can also be said for the yield across across the different soil types Figure 2.

Show the code
ggplot(
  crop_yield,
  aes(soil_type, yield_tons_per_hectare, fill = crop)
) +
  geom_col(position = "dodge") +
  labs(
    x = "Soil Type",
    y = "Yield (tons per hectare)"
  )
Figure 2: Yield from the soil types for the different crops are the same
Show the code
crop_yield |> 
  ggplot(aes(yield_tons_per_hectare)) +
  geom_histogram() +
  labs(
    x = "Yield (tons per hectare)",
    y = "Count",
    title = "Target variable distribution"
  ) +
  theme(
    plot.title = element_text(hjust = .5)
  )
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Figure 3: Yield distribution

Modeling

Data sharing

The data will be split into two part. The first which is the training data will be 70 % of all data and the second, the testing data will be 30 % of all the data.

Show the code
set.seed(1012)
crop_yield_split <- crop_yield |> initial_split(prop = c(.7))

crop_train <- training(crop_yield_split)
crop_test <- testing(crop_yield_split)

Given the size of the training data, 700000 rows, 5 folds cross validation data will be used for evaluating the models.

Show the code
crop_fold <- vfold_cv(crop_train, v = 5)

Model Specification

As stated in the start, we’ll be using the multivariate adaptive regression splines (MARS) model. Two parameters, the prod_degree, which captures the maximum degree of interactions, and the num_terms which determine the maximum number of features to retain in the final model will be tuned.

Show the code
mars_spec <- mars(
  prod_degree = tune(),
  num_terms = tune()
) |> 
  set_mode("regression") |> 
  set_engine("earth")

Feature Engineering

MARS model generally require less preprocessing except creating dummy variables. Feature engineering methods and steps such as feature decorrelation and data transformation are not needed but might help the model.

Show the code
mars_rec <- recipe(
  yield_tons_per_hectare ~ .,
  data = crop_train
  ) |> 
  step_mutate(across(where(is_logical), \(x) factor(x))) |> 
  step_pca(all_numeric_predictors()) |> 
  step_dummy(all_factor_predictors())

The preprocessed data can be seen in Table 2

Show the code
mars_rec |> 
  prep() |> 
  juice() |>
  head(n = 1000) |> 
  knitr::kable()
Table 2: Preprocessed crop yield data. Logical features were firstly converted to factors, and principal component analysis applied on all numeric predictors to decorrelate the data before converting all factor variables to dummy data.
yield_tons_per_hectare PC1 PC2 PC3 region_North region_South region_West soil_type_Clay soil_type_Loam soil_type_Peaty soil_type_Sandy soil_type_Silt crop_Cotton crop_Maize crop_Rice crop_Soybean crop_Wheat fertilizer_used_TRUE. irrigation_used_TRUE. weather_condition_Rainy weather_condition_Sunny
3.4007309 -443.5131 -3.2544271 6.5953117 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
5.7512281 -413.4660 38.4651334 -4.7839110 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
1.0089759 -168.7606 87.5538465 -6.0975899 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
3.7173872 -394.7569 45.5903100 10.3686348 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
5.3969866 -720.9266 -46.7551966 15.2481557 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1
5.4518593 -711.6603 -41.3647498 19.2116423 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0
3.6847372 -495.8147 13.1038455 16.1939490 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0
3.0231389 -686.8627 25.5219354 -11.4658760 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
1.7232956 -323.3785 36.9915343 8.6552575 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
4.6344744 -950.9416 -69.5868045 -2.8519015 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0
1.7470245 -277.6119 94.8666909 3.3706059 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
5.8388460 -744.2276 28.8373686 -16.1826853 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
6.9120319 -872.8384 -41.7072329 6.8584246 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0
3.5802921 -240.0413 58.2084201 1.9630820 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
5.9702427 -810.7648 -28.6007998 -7.7296912 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
5.5212996 -962.8168 -61.4827331 -4.4806095 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1
8.2644676 -1005.1906 -16.2531142 -17.9959450 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
2.6170623 -261.3142 37.6294917 8.8437005 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
1.2933271 -221.4408 86.5704468 -0.1552813 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
4.5754139 -554.1366 0.8347687 16.8366677 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1
4.1355801 -192.6099 49.8051290 19.8209766 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
3.5833654 -401.2845 52.4689066 -11.4656548 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3.4961461 -671.5287 -23.9025896 12.6958034 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1
2.0240696 -385.8237 75.9651378 5.4313029 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
4.4702756 -556.4865 -3.4993558 7.6085121 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
2.6369102 -309.2241 94.1466605 -15.8569091 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1
4.7785643 -734.4747 -20.6729247 -3.2105890 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
4.7404358 -643.3828 50.6757693 -3.2353822 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1
4.2476672 -399.0755 71.8376503 0.6495655 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0
3.1529306 -598.4676 24.8970443 -2.6472120 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
6.9765019 -814.5275 16.4940887 -1.5522390 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
4.4181121 -522.9164 32.8871108 -2.2873263 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0
2.0831751 -126.8781 103.7691760 -9.9791434 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
4.6632981 -532.6092 17.1725916 14.2671621 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
4.9752266 -686.0732 25.6109428 -1.5719943 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
3.6300717 -415.7840 2.4882849 18.0693031 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
6.4523341 -997.9162 -74.9602323 -7.6363843 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
6.0112715 -818.8715 -25.8789875 -13.3425221 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0
4.3661961 -839.1552 -26.0351393 1.6664309 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5.1992998 -201.9132 50.4526120 10.0629973 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
4.0366910 -722.2231 -27.4922383 4.3886675 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
3.5889826 -238.2678 91.3990317 -3.8283655 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1
3.3862257 -253.1853 84.8342756 5.9877058 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0
3.3523189 -595.1667 52.6834751 -5.7502941 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
4.7919624 -875.9382 7.1301541 -14.5667214 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
6.9460113 -702.8506 -8.2979918 12.3828018 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0
1.9405124 -189.2673 79.2593569 14.7421572 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0
5.6777701 -969.0637 -82.4248910 14.1313447 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0
6.4888201 -762.6764 -32.1070405 8.3061303 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
5.2197868 -638.2067 16.7834094 8.8424935 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
2.9983532 -282.6216 39.0062232 17.0106199 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
3.2140991 -309.0261 45.6540870 14.5422432 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
6.3233832 -846.5185 -62.0989419 -2.2030631 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
7.4470691 -994.3449 -84.6029861 13.0948680 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
3.5663459 -754.8177 5.3919034 -1.3608244 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
4.3447306 -340.9454 61.3961438 10.3268960 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
2.7466467 -491.4531 58.9693042 4.7008067 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
0.4946346 -161.5081 57.4026657 2.4567212 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
3.1621706 -358.6578 22.4308811 0.3589035 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0
3.2516285 -243.8357 29.2357258 9.7405682 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
1.1113103 -123.7512 114.5890046 10.1152081 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
4.5051287 -611.2904 -20.2209814 3.9573194 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
7.3947749 -810.5449 -34.1251994 5.4628878 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
5.6960466 -988.0859 -40.8155210 -15.0405340 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1
5.3971366 -747.5126 -12.1129509 -1.7128336 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0
3.0579990 -391.1635 34.2275497 2.5501523 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3.1550897 -149.5295 64.5764741 18.0422808 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0
0.7741661 -204.6583 119.6636650 2.0568929 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
6.1482207 -511.1522 29.4710550 7.1711264 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1
4.3991915 -675.1055 5.2790055 1.5938923 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
5.4158483 -799.0493 -63.7442122 8.2757748 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0
5.5254783 -703.0114 38.9456881 -3.9860368 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
5.2628468 -966.1125 -40.2704605 0.7541382 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
7.3276775 -856.2400 -35.1210266 -9.1968654 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1
3.2178113 -432.6284 -0.2544391 -2.3529524 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0
7.8189852 -822.8985 -20.4399871 -3.8438921 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
3.3472399 -316.5635 55.3917554 -2.6428065 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0
5.7537109 -839.7147 -31.9939865 -11.8374312 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1
3.8318727 -525.0461 11.4747909 -4.2791470 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1
6.6339019 -956.4380 -75.7190742 11.8216925 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0
3.9972611 -173.2195 96.8129699 12.2861965 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1
6.7802046 -704.5575 -4.3295554 -12.2759326 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0
5.3322213 -855.9965 -71.0544011 16.9136133 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
6.2124593 -625.7750 -11.2835448 8.4200247 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1
4.1596184 -573.0405 22.1261086 -5.7032321 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
5.3260310 -651.6647 9.0284146 -8.4261225 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
4.9030226 -349.3675 93.2892297 6.1368595 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0
3.3449965 -380.0887 11.6012576 -0.5154135 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0
0.8748902 -129.4524 102.3394647 10.2368628 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
8.3926429 -866.4641 -14.0487885 0.7418755 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
3.0062679 -141.2750 97.0176864 13.6324814 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1
3.3423274 -435.3880 48.6672786 1.5529309 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
5.4658464 -631.3472 10.6210598 -6.3845896 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
3.1752940 -245.2288 96.3023701 10.3768534 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
4.6335297 -352.4818 67.1932729 12.2990132 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
4.0718863 -464.6855 18.1188507 -3.7076736 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
4.3408332 -577.1773 0.6634312 13.7674457 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
5.4448235 -988.1821 -43.5195930 -13.0374796 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
6.1853760 -784.7867 -48.9506160 8.8631950 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
2.6881610 -303.1524 79.8933363 5.6382134 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0
3.2529480 -333.2807 72.3298075 -12.8469427 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
4.3050642 -269.2587 26.0587662 8.9818179 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0
6.3107855 -848.2779 -6.6391767 -12.5337040 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0
6.1105427 -964.2808 -32.1539307 3.6400508 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
4.5110316 -339.0350 98.1122653 -8.6054509 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
2.8028519 -122.0556 58.3922494 6.8288522 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
8.1109551 -954.3929 -20.8462653 -14.4020922 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0
6.0894783 -837.6277 -28.3024032 4.5364869 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1
5.2756628 -817.8507 -59.5945488 -2.2089459 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1
3.1321989 -478.3769 26.2680689 6.3695401 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0
4.9637088 -906.8462 -10.0085591 -18.6821839 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
3.0907945 -221.1214 86.0177814 -8.1347538 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0
6.3361851 -903.5577 -31.4526678 -14.9677230 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
6.8824752 -733.1694 -42.3311902 1.0017099 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
3.4369844 -427.3560 28.5016992 -7.2984101 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1
7.5876020 -925.3916 -32.8132443 -4.6252082 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0
3.2151016 -388.7837 77.5510384 5.3901004 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
5.1077056 -441.3569 66.8383549 -0.9229598 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0
6.9124137 -595.8584 -5.2713877 -0.6407174 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0
5.2391170 -716.8464 6.7070514 -4.3237221 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0
3.2937664 -300.6330 68.0263665 -3.8033144 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
6.3295446 -777.6458 -2.4133635 -6.5526246 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0
7.0321483 -979.7115 -55.0868173 9.6135555 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
6.7660464 -980.5191 -86.3850195 -1.3049061 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4.2898324 -156.7333 48.9861108 18.1562561 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
5.0884276 -861.0019 -34.0717831 -10.4532918 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
2.6019736 -234.1177 72.0841064 9.5959909 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
3.6150298 -350.2816 12.9559401 23.2094936 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1
2.3895981 -114.2045 61.3685387 0.1236504 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0
3.3739165 -360.1593 47.2003368 1.3924499 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
3.8229596 -550.2909 34.3789374 -3.9529129 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
4.6353874 -800.6465 3.3164498 -16.1429424 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0
5.5550050 -706.9739 -32.7797163 17.1251468 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
4.3956659 -628.0293 28.1856371 -3.9268620 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
2.0399734 -476.5962 8.4338431 8.7070177 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
5.6117565 -584.4886 51.4509838 -4.9500731 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0
1.6296805 -131.3550 121.5022266 4.3970690 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
5.0397658 -810.7915 -31.1166461 5.2107249 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
2.1941863 -136.6152 99.1692646 5.3878963 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
4.6977411 -234.7872 70.7198386 3.4657336 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0
3.2895710 -368.0201 47.5492982 9.2052637 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1
2.9493752 -317.2560 22.6841982 9.6999950 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
4.6312524 -696.8852 25.3549135 -9.5246966 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1.4183356 -227.7565 34.0060884 10.4211598 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
3.5219190 -277.3219 107.3477768 -11.5627390 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1
4.0898626 -632.5823 8.3838287 3.8166643 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1
3.7158878 -305.6959 47.1391127 14.1556654 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0
8.2581482 -897.1458 -23.1726347 -9.8089069 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1
4.9337920 -493.7987 51.6084652 -9.2121650 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0
3.9299444 -378.2260 39.7715489 14.4817019 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
2.9852806 -439.0428 -0.9318301 4.3686692 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0
2.5430355 -231.9606 80.8735162 -4.6383739 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1
3.6435313 -351.5781 50.1559369 4.0925019 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1
2.9559296 -270.1444 59.5413807 -3.3924241 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0
3.9032470 -668.6173 25.9411041 6.6135478 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
5.4176378 -678.1142 4.9390285 -12.8349937 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
5.5482786 -818.5936 -46.6186710 -3.8532900 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
1.6738436 -280.8219 36.4845539 -1.7186371 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0
1.6182119 -242.1997 72.1099075 0.8947463 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0
1.2614748 -115.3473 76.3038217 3.3053983 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
3.2087447 -158.4206 62.3863909 9.2413529 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0
3.1405441 -391.5815 75.6932816 3.5456251 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0.9664496 -147.0548 52.9492401 9.8042598 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
5.1464715 -458.1106 2.6533703 11.4869722 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
4.5377454 -627.7571 -3.6572808 6.8441362 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1
7.5136097 -934.8051 -57.6147641 7.7079940 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
5.1176560 -763.5375 -24.9571138 -1.5004289 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
6.6916248 -535.1936 14.0198556 0.9068005 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0
4.2969780 -174.7458 58.0769102 0.9250670 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1
4.1840231 -179.7969 82.1480395 -3.7229383 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1
6.8770636 -966.8941 -52.1260326 4.0083734 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
4.2691873 -826.3838 4.8329393 1.1863931 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
5.7060346 -684.5987 22.4554320 -2.9908637 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1
4.9793228 -751.8884 16.0218940 -2.1858181 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
2.5484145 -248.0181 49.9229946 13.1052700 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
4.1400309 -435.4839 50.8826906 -12.7568152 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1
2.6458257 -138.6524 77.9622067 9.3617128 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 1
3.4977246 -278.0361 74.7820451 11.5620927 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
2.7701517 -169.7306 56.7674551 10.7898028 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
4.8889973 -576.0044 54.5931010 3.7715708 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
3.2180131 -579.1083 19.0083360 -11.1479489 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0
6.6539112 -711.4862 -30.5531745 1.2664185 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0
3.4634941 -337.6049 59.5963779 14.0664802 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
3.9782171 -388.4453 90.5789087 3.1585494 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
2.8132439 -213.7064 52.7643062 5.3170294 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0
6.1551766 -884.0958 -6.6800075 -15.1064748 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
6.7106234 -824.3774 -68.8486854 3.0834218 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0
5.3663359 -738.1986 31.9053703 -0.8766878 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
1.3420953 -191.4532 49.7676826 13.7022158 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0
4.6790143 -788.2147 -40.2223566 -1.3269296 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
4.3086977 -409.3837 47.5866212 6.2882627 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
4.6230681 -579.3662 12.4812060 12.6384546 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1
6.6224572 -715.5022 2.2880817 3.3099481 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
5.8996258 -787.9827 11.7471359 -10.0734647 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
6.7479130 -855.3478 9.9864693 -1.5400992 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
6.1813935 -479.3274 32.4288931 11.9582503 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
6.4578054 -913.6984 -34.4265223 8.6401783 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1
4.0306080 -531.9936 59.1939209 -18.0906303 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
4.9425591 -578.1842 22.8806877 -3.0624718 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
3.0416958 -552.1501 -6.2626991 5.8763476 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
5.4699091 -524.2800 2.8808003 -1.4386690 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
6.2920332 -798.0368 10.0315073 -5.5834157 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
2.5034166 -557.1266 36.2534391 -14.6845974 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
4.3857970 -307.2552 80.7805365 -12.0313268 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0
4.7672297 -543.1666 0.3923298 1.1139308 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0
4.5032743 -969.8746 -69.9640658 -5.0817069 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
5.2553721 -708.1022 33.5687542 3.9806104 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
2.9156537 -167.9979 60.1182409 15.7040427 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0
5.9935652 -644.8321 -21.5347645 3.4829819 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0
3.7923320 -304.8505 93.8544909 9.5397583 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1
4.0891349 -950.7247 -46.9988476 -3.7154207 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4.9736708 -341.0145 48.3062582 12.0467419 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
4.9855087 -712.3770 -42.1656981 -4.2833251 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0
6.0356640 -854.0724 -67.6166385 6.9924073 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
2.2109925 -412.7850 14.1478184 17.1722814 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
5.3570828 -615.5883 -22.6236519 10.6964507 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1
4.1589142 -272.6428 81.3295607 9.0668779 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
5.8870088 -900.3288 -22.7424106 -15.3105868 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
3.5418438 -507.8049 42.0990326 10.7245147 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
2.1077768 -256.2516 38.8126922 10.6757523 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
2.8609328 -386.6987 74.1362518 -2.8043026 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1
5.1940088 -943.5160 -4.6246588 -4.2207611 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
5.5243701 -901.8868 -33.2955989 10.0070548 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
6.3635891 -888.4641 -53.3851656 7.4089536 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
5.0360617 -781.1320 18.5247554 -12.5800299 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
6.5874181 -757.8222 -13.7083507 -6.5118383 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1
5.4557413 -915.7707 -76.2653724 12.7987285 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
2.7039015 -159.4381 92.5895205 6.1665467 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1
4.6874292 -937.8941 -28.6499230 -9.8667541 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
4.8243047 -615.5337 40.8075435 -12.5525383 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1
7.0783300 -931.5511 -18.1351036 -8.8704077 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 1
6.1804013 -778.5013 8.0442228 -10.3123418 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
5.6909779 -971.5166 -82.4350449 15.9889316 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0
3.7441809 -669.2213 -15.3389504 -7.7929008 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
3.1983531 -168.0639 75.1525119 13.4942718 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1
4.0590137 -681.8639 25.9882419 -3.0053108 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
5.8182532 -623.1615 1.5019695 3.2381087 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1
5.9735137 -503.9410 44.2981074 8.3671670 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0
4.7687816 -533.5146 -9.6683652 10.0432442 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
4.0445461 -375.8728 81.3871131 -16.1682559 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
3.4080966 -174.8144 101.8019124 7.6259893 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0
5.1538263 -707.8338 -3.2015568 -4.2297083 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
5.3090065 -814.5561 -48.7770078 -2.4036190 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3.8700463 -192.2589 53.0728069 10.2935701 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0
3.3663036 -454.5423 67.4083908 2.0334999 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0
5.6566141 -590.5723 29.5366188 -1.2783089 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0
6.8901334 -985.0758 -64.7307854 7.0647532 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
6.1697620 -821.5088 21.8839885 -0.0698699 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1
5.3747798 -627.5058 34.7643552 2.5530736 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0
2.7876929 -599.1035 24.0621308 -6.2230689 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
6.6852476 -936.7331 -2.8046306 -20.7692006 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
3.5938938 -238.4724 27.4105578 6.7467559 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
4.1481740 -369.0404 82.4063410 -11.4745996 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1
4.2423394 -446.7448 35.1065347 -0.3204606 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
6.3880063 -469.6174 27.3006844 14.6670545 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
3.0523713 -282.9972 102.7263513 5.5783769 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
2.6547316 -146.4079 65.4770511 4.8949798 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
5.5711593 -1002.6246 -42.3855705 3.7196021 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
5.7984283 -907.8670 -5.3643238 -20.4322486 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0
1.8770501 -391.8564 25.2302784 14.6327492 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
3.9055702 -533.1506 47.0482990 -0.8477910 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
5.5456566 -854.1380 -9.5200627 -11.9482172 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
6.4994543 -953.6289 -7.9746921 -2.6158491 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0
4.0495294 -517.5400 -5.6303284 17.3088288 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0
1.3929570 -359.5878 17.2062447 5.8331425 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
2.8257264 -153.5722 49.3484526 17.4649823 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
-0.1074592 -154.7930 61.2356727 5.8481213 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4.0640444 -377.1107 91.3497266 -1.8961183 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1
7.3527156 -661.8331 -3.8641974 -2.9294879 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1
1.9860589 -463.5570 77.6977552 -11.3133537 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
6.6618676 -899.1742 -63.9904468 14.4037937 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1
5.0455629 -679.2560 1.5315795 6.6995818 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0
8.2766646 -866.6960 -50.2950784 10.5858693 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0
6.3482250 -677.3678 43.8908720 -4.8524220 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0
3.7058439 -118.7036 84.4245861 -4.8652052 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1
6.0265013 -900.2625 -19.4584541 -9.4266289 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
4.8297130 -660.6679 24.3406925 -2.3320928 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0
3.5996141 -687.7846 3.0901675 10.8547859 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
2.3769909 -407.3135 26.6976116 -6.4915317 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1
5.6101467 -724.6273 14.8483684 6.1565947 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0
4.5519786 -547.5832 -17.1535350 19.7491695 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1
3.1622934 -341.6910 74.1442119 -2.4997151 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
5.1032670 -801.5214 14.1620297 -12.9592564 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
5.4459247 -797.0273 3.3465473 1.3375554 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
5.1063217 -650.5965 -8.0286148 13.3647408 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
5.0534572 -563.9434 24.1656951 -7.8699136 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1.5185825 -365.5008 60.0099168 -2.5241410 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2.3169252 -180.3345 80.1325081 12.0537451 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0
4.7638159 -525.7587 15.8283679 12.4616863 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
1.2116854 -123.4760 103.0669314 -0.9370310 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
6.7101688 -868.6929 -16.9907404 -1.7935363 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0
3.3428574 -315.6616 73.3008834 8.4099778 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
5.0705610 -340.5980 41.5455913 -1.0878335 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0
5.9746472 -792.2314 -45.5812082 10.9296768 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1
6.7988916 -998.7092 -7.5485361 -10.8213933 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
6.0371104 -729.9576 -4.3556005 -12.8024430 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
4.5086164 -602.0612 34.1425391 -5.1502310 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
3.5414202 -374.3890 10.3207311 13.9951200 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0
2.1792987 -270.8617 77.3433185 13.4335604 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
4.3894606 -693.4092 -3.3076570 9.2227599 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
5.6578973 -962.3562 -9.7064908 -19.3838004 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
6.3001920 -826.2014 -53.5194282 3.6785102 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
6.2889943 -845.2526 -65.1276704 2.1952102 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1
2.2012328 -252.1779 101.2760281 9.8049766 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
4.3203666 -979.6121 -59.6801370 -7.8193597 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
4.5587886 -489.3276 6.3508214 8.4505874 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
4.5579924 -416.8515 18.3618053 0.5819970 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1
4.2879716 -357.8500 95.1259794 -3.4985078 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0
7.0096382 -1004.4454 -22.2461575 -17.5701053 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0
4.9094127 -605.1808 29.5029952 4.8786565 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0
4.5911586 -530.4394 61.2657015 -14.2359148 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
5.0519267 -895.2040 -67.4157379 -5.3813058 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
7.3370676 -701.3340 22.8502987 6.9085061 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0
3.1734420 -205.6729 116.9770765 4.8592439 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
6.2349299 -766.7899 -40.6984298 -0.1575691 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
2.9931984 -277.4584 82.4034364 -2.1015688 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
5.5177380 -618.1307 27.0095856 -2.2454045 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
2.4458125 -518.5406 -17.8566329 3.8153479 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
7.9344523 -865.0373 -26.3902539 4.9472979 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
5.3319255 -987.2548 -41.4880754 1.1821250 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
5.7988176 -719.0212 26.9583583 -4.6451914 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
4.7385025 -556.6510 48.6478290 -10.0372681 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0
5.2803245 -525.9522 22.6870390 10.7900970 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0
6.7765890 -926.9346 -75.1658755 -3.3828213 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1
3.0367097 -248.6780 61.3230373 -1.3227035 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0
2.2167040 -124.0385 57.1819639 17.5810243 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
3.4953268 -296.1875 87.5863536 2.4684859 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0
5.5773736 -790.0515 -61.9881467 -0.2327993 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
6.4236796 -674.0484 3.0622741 10.1129564 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1
5.2527733 -806.3984 19.0936110 -20.3841505 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
4.8151203 -405.5362 52.7550944 -1.7280165 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0
7.0837697 -929.0411 -82.3128229 3.7085330 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
5.6776168 -773.5269 -11.4920200 1.3922663 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
4.4607409 -349.3703 24.7916643 19.7576235 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
3.9657814 -307.9224 23.1763170 4.8424266 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1
6.7743707 -780.5643 27.2579089 -5.7054123 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
7.2493704 -727.3746 -28.5773346 8.1408914 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
5.1388226 -335.8385 83.2611243 7.1738310 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1
4.7350552 -843.5491 -16.8829030 -5.7059569 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
4.4245532 -618.2430 20.3117808 -9.6254951 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
3.5569133 -368.1881 8.3906320 9.8385578 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
5.3805411 -542.4749 1.1454501 -0.7892954 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0
6.2269744 -969.7530 -8.7959133 -9.1938793 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
5.5583717 -989.5171 -28.3410495 -8.5203804 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
1.3388910 -146.7250 92.3594670 -4.8391967 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
7.2862546 -961.1819 -58.9523530 11.6208839 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0
4.5302515 -577.3112 37.4869364 -8.0888051 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0
5.9533526 -822.7112 -30.4763164 -12.6216945 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1
3.8546609 -269.8394 21.1867085 0.7925858 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0
2.1823662 -340.0450 26.3304279 20.0089048 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
3.8964669 -521.7161 41.2470457 -2.7608435 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0
4.0559074 -391.9665 49.2530748 -4.1661221 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
1.5454860 -176.5191 98.6390178 13.6797784 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
5.8029134 -966.9766 -66.4651286 -0.3512370 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
4.1645766 -382.5899 54.7740326 -4.6890145 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0
4.1878583 -686.4177 -8.8321437 12.1132347 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.5952465 -310.0916 38.9928005 18.1549594 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
2.6631668 -263.0330 93.9146629 -12.6053107 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0
5.2393697 -724.8034 -11.8313347 -2.8851520 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
3.4233254 -721.5309 -38.3633240 1.2227046 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
6.2391161 -423.8988 25.2082700 -5.8942946 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1
6.8796816 -982.4314 -57.2331027 11.3387999 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0
5.0542192 -750.3218 -39.3260569 13.8767838 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0
4.4586618 -569.3267 55.7433441 4.1872312 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0
5.4353199 -704.6858 13.7621878 5.5049219 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
2.7733006 -200.9729 41.8315811 22.7100352 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
4.6398152 -613.5038 39.4987217 -10.4375358 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
4.8864087 -603.5883 32.6106923 -11.4307139 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0
4.1319050 -474.9555 1.1555833 2.1710673 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
2.7321362 -592.8220 24.0678681 -11.0788059 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
7.5452177 -889.2733 -70.0211510 7.5276153 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
4.3509240 -212.6832 96.4626469 0.9653568 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0
6.1352511 -449.7176 57.8131167 6.9110770 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
5.2851061 -562.0771 17.7273076 4.6238521 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0
5.9404784 -793.5967 3.1060326 -2.5022249 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
5.3105349 -857.5498 5.4803562 -16.7585985 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0
4.9505311 -181.4537 90.5783059 13.4784691 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
3.0292050 -253.7671 96.5863616 -6.7848223 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0
5.3686320 -1006.1995 -31.9529515 -18.1951006 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1
2.4077060 -150.5143 47.5021869 11.1238990 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0
2.8335168 -257.5293 46.0854301 -3.2450444 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0
4.2357794 -732.4562 -22.6227031 -4.2113447 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
8.0485617 -932.6538 -55.7381832 -10.0006233 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1
2.4537281 -153.0463 128.5525884 0.2264128 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0
4.6042194 -776.9467 -23.0390350 -6.9088428 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
4.1590302 -673.1457 18.7315184 -4.8650418 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
5.2760840 -377.5502 87.5568253 5.1395729 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
3.6339503 -465.4743 42.1148049 3.0747239 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
2.0304268 -315.6172 43.3448623 13.4460130 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0
6.4667103 -519.0856 33.4433833 12.5568177 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0
3.4210293 -643.3462 -33.5123632 4.3794465 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
4.6476202 -704.8050 29.4363822 -3.6175612 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
5.6842658 -643.1199 35.3280072 -7.7439569 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0
4.3980772 -538.1136 60.7961136 -5.5217302 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0
6.9504826 -874.8797 -7.4246713 -0.7176441 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
3.3000427 -318.5904 58.1577721 7.3805847 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1
4.5076231 -373.0716 54.8053756 8.2110827 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0
2.7642792 -143.8652 61.9365496 5.8056621 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
5.0029561 -981.5546 -24.9962520 -18.5526264 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
4.1104364 -507.0101 9.0149924 -0.0720116 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0
7.9289026 -999.1817 -67.1535988 11.2574254 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0
4.1285018 -691.7457 20.5307929 -11.8537694 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
6.8936018 -913.3213 -51.5049966 -4.3943909 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
3.4896359 -212.6505 85.7913612 9.3599724 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
4.5379721 -347.4215 32.8400425 -2.9642065 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0
2.2675810 -239.6916 63.7434504 -1.5467959 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
6.4503617 -989.8496 -95.8653585 0.0276207 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
2.4440281 -169.2017 68.5811631 17.6016981 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1
3.8952272 -403.6341 62.9259396 6.0810901 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0
6.4436277 -826.0862 -56.3401007 9.9857482 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
6.2689992 -804.6980 2.0246669 5.8940048 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
4.8246947 -596.4298 33.4094320 2.0082016 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1
4.8377699 -649.4561 38.3769081 -18.1755901 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
7.0401845 -852.5365 -72.9329246 -5.0080690 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
0.8249499 -236.7582 67.5543263 -5.3968831 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1
4.0062386 -401.5606 17.9497244 6.8323071 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1
2.6240449 -169.9185 121.2859349 3.1035965 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
2.8974774 -217.0007 44.1927497 1.3500341 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
4.1741083 -789.5545 17.3116348 -16.9826358 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0
4.4157001 -764.2947 23.1097687 -13.3924317 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1
5.6683556 -884.9026 -53.4431189 -0.6794199 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1
4.3569814 -600.1870 29.0705692 -1.1120095 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
7.3467078 -912.4202 -18.3102979 -14.5245627 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0
1.2168438 -113.7766 45.7249705 4.1184793 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3.9222907 -274.2441 53.5945269 1.0253377 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
6.5575058 -885.3461 -60.2145116 1.9129393 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0
3.4487885 -286.3936 106.2914606 -4.6223180 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0
4.0812066 -255.5462 110.7352174 3.1316766 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
1.2509105 -157.5341 125.9197113 -14.1566041 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
7.8824668 -790.8658 -23.1670134 8.3259544 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1
3.9939826 -490.1366 31.3122133 -5.2292395 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0
5.6145572 -606.5495 19.5291230 -7.4217443 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0
6.2181158 -916.1291 -26.8585875 -7.9819616 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
5.5292264 -612.6347 40.4075331 -11.7196464 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
1.4493018 -208.8937 45.0870756 19.5544219 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
4.1065806 -137.1680 105.8199036 13.0552032 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1
4.5549576 -759.8418 -44.4124908 16.6294463 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
2.7559239 -246.6801 70.0823076 -0.4695314 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1
6.5377803 -909.2534 -68.2504175 11.5464573 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
5.3773675 -580.1876 28.6935656 -8.4251729 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1
5.6250094 -555.0963 54.1334885 0.3860005 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
3.3446724 -172.8747 112.9326928 10.0118273 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0
4.0508659 -589.3924 33.0138039 9.7187929 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0
5.1408429 -646.6419 11.6371934 -4.6503176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4.2164507 -477.6320 23.1352912 10.6656122 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1
3.2781092 -125.9537 45.7197443 13.5604239 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
1.2873343 -158.2535 114.3132446 -4.6994698 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
4.8313742 -913.9659 -3.5723998 -6.9548221 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5.3750125 -818.9629 -51.3232993 13.7938188 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
5.7890893 -582.0634 -3.6308484 6.7053700 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
5.1405750 -559.6216 -13.4993144 6.6280474 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0
3.2171329 -283.2962 34.1837601 14.1730908 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
5.6795379 -966.5624 -10.7052517 -15.9456865 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0
3.0827269 -567.1337 17.9136977 -10.6836962 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
2.9779580 -495.4812 41.8083287 -0.2740938 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
5.0521505 -333.9196 48.0387451 15.3002870 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1
3.6474913 -466.3239 75.7132787 -13.7996454 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0
4.0968096 -711.2771 -25.5320592 5.4342962 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
3.4201353 -459.4907 76.1653280 -11.8716858 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
4.9726807 -663.5749 37.7151494 4.6860295 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
6.4445661 -692.9242 -41.4000227 4.4727347 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
4.7017633 -498.7646 2.7589594 8.3510351 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0
4.4298187 -356.9641 7.9488483 3.9953460 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
6.1111277 -931.1208 -16.7627947 -12.5886689 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
7.5245835 -953.5187 -44.7162886 -10.5631880 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0
6.7109746 -679.7840 17.6150326 4.9269685 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
6.8023498 -940.5379 -83.2141799 18.3266668 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
6.7397076 -899.8274 2.7760381 2.9277760 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1
4.2715011 -933.4077 -60.3085868 -6.5108547 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
9.1233316 -976.7704 -29.4661468 1.2689346 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0
7.5608041 -826.7351 9.2091076 -7.4279390 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0
3.2938708 -224.5023 100.7635949 10.9740940 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
7.3740122 -905.7231 -78.2336560 -4.6084980 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
3.4505749 -430.8254 48.2659660 11.1598767 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0
6.9083148 -737.9224 16.1658796 -2.2683265 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0
6.8962304 -988.8203 -21.5405367 -6.1308235 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1
5.9062557 -830.5662 9.8225867 -1.4585841 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
3.6773274 -550.5756 19.6856756 5.2287554 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
5.2338139 -769.9489 -38.4878174 13.0752283 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
6.2395233 -632.2107 45.5431755 3.3521584 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0
2.6224127 -349.4305 57.1507314 -8.8094698 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3.1628088 -303.5304 49.1789654 17.3794635 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
1.5528526 -265.8677 66.6171443 -2.4443955 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1
4.5440307 -568.6397 16.6933153 4.6853441 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
7.6639049 -968.9015 -59.4470610 5.1371567 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1
6.4792319 -445.3797 74.5872530 4.7224081 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1
4.2104224 -742.2513 -26.1433145 -3.6851423 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
6.8111336 -730.9841 11.1523757 3.1545696 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0
5.0533069 -724.0433 34.3920364 -19.9071585 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1
2.8876022 -245.0424 74.0835926 2.6528447 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0
6.2910916 -848.8813 -71.8306508 2.5605837 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
4.0650094 -230.0516 94.8688200 6.6989881 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1
6.9618735 -692.1372 -2.4189011 2.4927073 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0
5.3074002 -355.9091 48.9204089 6.4734520 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
5.7760664 -967.8327 -80.7469811 6.2433993 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1
6.1061140 -825.9988 -63.3805522 0.7798953 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0
2.4843589 -226.5453 48.3717468 8.9958697 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0
3.3231166 -274.3225 68.5144675 13.3785788 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1
6.5096097 -665.7675 -18.6966368 8.4113261 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0
1.4087969 -267.0545 26.1693308 7.8070777 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5.0943652 -690.4378 42.6116524 -5.9638640 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0
6.7518302 -817.5837 6.4521468 -2.7986855 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
2.1522955 -407.9782 68.3284314 5.5744300 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
5.6388857 -908.5745 -22.0949228 -0.7063514 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
4.1718742 -877.7311 -29.7594180 -11.6820603 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0
6.9164467 -1001.6360 -31.8475494 -16.1924318 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0
4.3029938 -603.2179 50.5719704 -4.7474256 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
7.6244563 -834.5227 -66.6436997 11.6467225 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1
5.3720144 -955.1839 -43.2158422 -6.9907129 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
6.5279047 -958.9594 -23.6069514 -4.1625802 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1
6.0131362 -858.1934 -30.5187336 -10.4263370 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0
4.1972393 -410.1493 74.5635869 7.4375326 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
2.8428552 -463.8303 13.7159916 14.4585853 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
2.3773890 -126.7455 55.7252474 2.5104107 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
2.8869462 -308.3099 21.5986593 2.4894599 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
3.7013614 -216.7209 64.5889512 -5.2103862 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1
4.8737153 -311.8323 98.2873031 -3.7171398 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0
3.9167966 -641.0499 -5.8671072 -8.7045839 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1
4.4375689 -731.9051 -38.8559255 -3.1868210 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
2.2156338 -313.1730 37.5340732 13.4393649 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
5.7851678 -573.6877 -25.7643102 13.1778603 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0
2.2643255 -209.1808 37.8609381 4.6976380 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0
3.5338729 -679.2596 -43.0645736 15.9554372 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
5.4116059 -559.2979 23.9831756 2.7391953 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1
3.7826466 -523.5704 -7.0785821 19.9739482 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
3.3145035 -475.3744 4.9534718 10.9377326 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0
5.3107613 -496.9802 37.1655160 8.4788893 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0
4.1999480 -318.7578 22.8643210 16.7825969 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
5.3756906 -788.1624 -61.3100368 1.6042598 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
7.1558467 -746.0993 -39.4972893 9.7590988 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0
7.9062724 -885.8928 -65.2183650 -1.9082965 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
4.8230751 -358.3803 40.1727046 16.1184201 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
5.6248377 -700.5317 1.7878640 -5.7309534 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
1.8418645 -266.8658 104.8329140 3.3061571 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
2.2685063 -514.3849 -19.7481700 1.4368590 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
3.1927322 -387.6457 50.5007228 8.6306037 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1
5.1761626 -958.8797 -2.9297877 -14.2346422 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
5.6680145 -806.0283 -32.6930233 -1.1405583 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
3.3069584 -517.6828 -7.2239381 14.6878349 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
4.4897535 -248.2653 91.5904546 9.9145537 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0
5.3092010 -712.2988 -14.2757903 10.7342541 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
6.7913748 -905.1432 -79.2513528 15.1638174 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
6.1031949 -890.2575 -75.4186282 2.1275456 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0
3.6415110 -646.5470 41.2242338 -1.5197329 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1
0.8099949 -179.6676 62.5243898 16.3593697 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
4.2180567 -465.0987 51.7516193 4.4303158 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
2.8916601 -246.4848 29.3079113 22.2258533 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
4.6527375 -457.2466 -7.0307690 13.9737635 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0
6.7137534 -544.1364 -18.6131232 20.0276073 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0
2.1374051 -277.4174 23.8897797 19.8618500 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
1.2730756 -403.7689 40.8605712 -0.6453636 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
6.1944621 -857.5680 -18.5235125 2.2323270 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0
5.2928413 -688.2897 -27.6849054 12.3251468 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
5.6800804 -806.0066 -11.4315459 -3.2820471 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0
1.1549197 -176.6004 42.5388356 7.2088647 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
6.1890379 -890.5937 -39.6325190 10.6294438 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
6.0184125 -696.6053 -29.0410582 17.2160084 1 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1
5.7177622 -536.1300 34.8745035 -12.5468508 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0
2.0740643 -472.7035 20.3580080 -6.7054524 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
3.5155632 -755.8855 -37.1713174 13.5960957 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
2.3502697 -256.5102 44.7446323 14.6106777 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1
3.8272796 -488.5270 52.8172285 7.6925891 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0
5.3454508 -675.9454 13.9053618 -6.0683446 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1
8.0239992 -886.5854 -70.5591052 7.8521828 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0
3.2348227 -432.7085 83.9375832 0.1587284 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
5.1438171 -570.6772 43.5326400 6.1525353 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0
4.7100035 -913.4156 -77.2208582 1.2727872 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1
5.5993647 -771.3969 16.3213090 -5.7062986 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0
4.3222459 -951.3953 -60.8620306 -5.2977409 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0
4.9486752 -738.1396 -27.4247248 -8.0919110 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
3.4441080 -143.5587 125.6143787 -11.4000086 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0
6.5046543 -1000.1386 -60.1861320 0.6358662 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
4.7280527 -154.4845 85.3568150 -2.7230128 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
3.2227497 -611.2397 19.7716959 -2.5926701 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
3.7447803 -406.5591 41.8076603 -3.9327550 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
4.3080530 -692.0342 9.8214273 -13.4689159 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
5.9857009 -611.4411 12.5858896 -7.2456742 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1
4.5963257 -465.1314 78.2530004 2.6913156 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
6.4867319 -972.8334 -47.4305048 1.2955143 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
6.8055681 -693.6506 10.8049440 -7.4175650 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
6.8273651 -874.9046 7.9864654 -6.1589075 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0
4.8518789 -279.2081 60.9800965 15.7050225 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
6.2723411 -915.7085 -18.7578943 -14.1499877 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
6.1586916 -779.7780 -15.3680947 7.5039274 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
3.9560486 -767.7594 -37.1419124 -2.2132829 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
5.0436284 -582.3439 16.9641067 -8.5242143 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
4.0714547 -665.9600 -32.9254207 9.7118344 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1
4.1835612 -386.0604 14.3366567 12.4257391 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0
3.1702310 -205.4174 39.0496094 17.6402379 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
1.2373333 -139.8812 127.7444440 6.1986973 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
3.6491467 -195.3869 62.6776352 -0.8934208 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0
3.7922904 -321.8485 51.0323190 10.4352393 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0
1.8912787 -221.4868 33.7210317 14.2307729 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6.2014124 -896.0731 -23.1160660 -15.4040121 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1
3.4088361 -290.1843 95.2819769 -15.0514729 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0
2.6758811 -331.2017 40.7822122 13.0697159 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0
4.1023423 -284.7359 57.1586186 16.4837007 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0
3.9683522 -707.7085 29.2833014 2.9304304 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
5.0910800 -723.3762 22.6790288 -7.0104421 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
4.1232204 -811.5934 -40.0808414 2.4286813 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
4.6379153 -293.9234 37.3675854 17.8091517 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0
4.5474735 -635.3947 50.8088252 -8.7973742 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1
6.6169685 -745.6205 -23.1554490 -6.6473330 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0
7.4384623 -951.5319 -17.3698156 -19.8262763 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0
1.3633758 -163.3070 75.4682117 11.3349361 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
6.3408259 -870.4402 4.4578674 -6.6842860 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4.0087129 -273.0190 66.3347987 -3.2977206 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1
5.2875374 -663.1808 16.6725331 7.5711920 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
4.4637795 -607.7693 -16.9344254 -2.9057706 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 1
5.0636948 -640.0777 38.9566172 -12.5671967 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0
3.1324418 -333.5377 70.7803889 10.0207667 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6.2379550 -567.3358 -10.7877100 5.6971565 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1
3.1890879 -159.0601 43.8313434 25.0570797 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
0.9760818 -138.2599 116.0001553 3.0903449 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
6.3217087 -867.4317 -27.2623333 -7.5162832 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
7.2084237 -868.5406 -61.7187076 -3.3752790 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0
4.6953105 -211.4330 85.7822866 13.4060193 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0
2.3259871 -227.6954 47.2073289 -0.8233763 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1
5.0694035 -703.1967 -47.2632397 -1.0131885 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1
7.0147527 -965.6025 -89.2159242 -6.5553951 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0
6.5653698 -897.1773 -76.7629038 16.0648818 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0
4.5706750 -286.4582 26.4261695 14.0713309 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
4.8010091 -573.1778 36.6853303 -10.1733966 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1
5.2528277 -329.2617 57.1375641 0.6299589 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
7.9543285 -619.1471 23.8278286 -11.9293435 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0
3.0419017 -549.3655 5.8634596 -2.6529094 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1
2.2264150 -191.7550 86.0243206 14.3973915 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 1
4.0203189 -659.8201 39.1488128 3.7189791 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
5.5368307 -944.2565 -81.0446248 6.6100236 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
5.7936321 -804.8752 -25.1124695 4.6969681 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
3.5610733 -470.6456 58.0325020 -11.0065449 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
3.5969594 -495.8836 44.2976840 -13.0100356 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
1.5969641 -233.2999 105.5498305 0.8519035 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
3.3309180 -136.5906 94.4469588 7.5318954 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
7.1743369 -921.6128 -29.1167575 -9.6902350 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
2.2906542 -318.8234 20.5141102 20.4869491 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
1.5141401 -281.2856 39.4470408 8.0471292 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
5.8120386 -705.0390 -6.6470809 7.0217964 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0
6.5742943 -736.2341 -26.2214706 6.3662836 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0
4.2652848 -757.5362 -19.4055915 -9.3238600 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
3.7237111 -444.4760 49.9988552 -10.0743399 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
4.2061826 -458.1249 -2.4617091 21.8201543 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
4.5846572 -549.7353 -0.0627048 14.0764129 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
4.5988105 -456.2115 9.3754812 -2.5512098 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
4.0171756 -488.9170 42.4020212 -2.4833962 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
8.4388482 -989.7742 -29.9807878 -6.2404615 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1
5.3364834 -704.8550 -41.7077141 -2.8619595 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 1
5.8049226 -648.7738 -32.4254045 3.8244481 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1
3.1920540 -274.5918 62.9467780 -3.4809127 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0
4.7006680 -826.3494 -17.4433552 -11.7367556 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1
6.6816668 -605.4276 -19.9655618 5.6811922 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
5.7478624 -463.4264 23.6880422 7.3526922 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0
1.7416592 -270.4996 93.6944855 7.2371177 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
1.0685201 -340.7424 81.6683569 -6.8520179 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
3.8974005 -344.7180 40.8888075 14.0241637 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
3.4285469 -166.1943 80.8960485 -0.2545303 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
4.7152563 -191.2776 103.9726584 5.8237454 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
6.9473518 -751.5574 -44.6527570 -6.0934541 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0
6.5548521 -509.6564 22.2085101 -4.2123612 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0
2.4153736 -428.1899 38.1870776 -4.7656947 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
3.1174301 -152.4243 108.2805961 -8.4194642 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1
3.1980576 -248.6829 58.9312322 -2.9051961 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
0.8833023 -147.9545 71.2196470 -1.1655287 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
2.9311016 -197.5498 36.6503259 19.9743720 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1
3.5951455 -492.0189 58.7278709 -16.1838271 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1
2.8753512 -451.9723 17.8528637 10.2958688 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4.4925420 -713.0320 -33.1380609 -0.0593620 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0
0.3557158 -135.0680 110.6450520 9.7607289 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
3.6005726 -464.9368 16.3861397 -6.9223808 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0
4.0911098 -324.5647 96.4326481 -2.8594903 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0
2.5881624 -327.5252 56.1665063 4.6197423 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
4.7880953 -595.4916 43.7019388 -8.9877190 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
2.8772645 -207.6697 94.7110233 -1.3979240 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0
7.6979781 -862.3932 13.4037458 -9.6245301 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0
2.5383205 -331.2815 17.1750160 18.9316161 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
3.0675581 -177.4339 75.9920466 -5.3493010 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0
7.1766384 -968.5210 -42.9051810 4.8930149 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
7.0406882 -684.9278 -44.2437422 4.5401567 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1
2.7609374 -249.6389 62.3733335 9.5814554 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
4.5783683 -413.9743 17.3667496 13.6416554 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
-0.3529212 -187.4213 82.6480145 -5.4315064 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
5.8962003 -643.0760 48.4972521 -9.0573745 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
3.6223242 -469.9128 36.1519003 -7.4329925 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0
1.0964048 -194.2845 99.9534691 -11.4320786 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0
2.9415311 -307.6393 79.7726907 8.5385110 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0
7.2587950 -990.8307 -61.7235494 6.0518055 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
5.6136095 -621.6611 23.3329386 -7.3504790 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0
2.5299496 -222.0653 47.3284971 5.4637686 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0
1.2371294 -134.9295 50.4805309 23.6003145 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
4.8457908 -221.4047 43.9930216 13.8741208 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0
7.1821726 -984.2782 -26.9661165 4.1830821 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
5.3838914 -751.5363 -8.2558201 5.1084274 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
6.5301969 -727.1082 -17.4188668 11.9625924 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
6.3453862 -533.5784 29.3464582 -1.1848526 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0
7.0799897 -589.6844 9.5541094 11.4278661 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
1.7410031 -123.2335 73.0172733 18.5992082 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
6.0038555 -970.1026 -58.5242537 -4.5409962 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0
4.4598805 -856.1604 -43.5774786 -10.1889715 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
4.2896790 -452.7947 -6.2142139 -0.6174359 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
6.7358269 -717.8082 25.5877809 -2.1961399 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0
4.1455027 -741.2126 -9.8687271 9.3666028 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0.9619155 -247.2072 89.4713929 -11.3123039 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
4.7642057 -985.7405 -25.9687418 -20.0391163 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
3.8695022 -532.3697 35.2369676 6.4441875 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
2.9563569 -391.5949 49.1672067 10.2370132 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
6.9904443 -739.2759 17.5675456 0.5802402 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
5.2606702 -576.4983 52.7037745 -15.1287811 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0
4.6479974 -686.2411 -8.8083916 12.0917585 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
5.2331346 -960.3070 -84.8591853 15.6035654 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1.3948256 -244.5311 97.4952412 -4.4978881 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
5.6977791 -983.8240 -10.5890077 -22.1060204 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0
5.0109808 -834.7255 -63.3509829 7.7088624 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
5.8664600 -680.4057 -44.8460711 3.1248458 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0
3.4213213 -444.2505 33.3315624 -0.8390030 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
5.7344270 -905.8010 -14.3087430 -10.2369371 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0
7.2033502 -833.6400 -3.9962932 4.0803572 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1
2.1317769 -352.1942 80.7382882 2.5543035 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2.2234298 -243.3012 58.1245499 -0.9482041 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1
2.9615111 -229.7528 93.2601837 3.6614896 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
5.4824758 -646.4314 -13.6665360 -7.2847495 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
4.5600568 -938.2152 -44.0725027 -9.2490891 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
5.2263981 -456.2501 56.5116128 5.6451362 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0
7.3560267 -896.9518 -35.8371793 -11.2568931 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
4.6615484 -629.6402 26.6429060 -15.2321563 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1
7.3146858 -757.4147 -17.9440700 2.7435124 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1
7.0857939 -957.9367 -55.3124470 -8.4158384 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
5.7933062 -465.5236 53.4792947 -12.0013539 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0
8.3292751 -916.7946 -0.4048277 -19.5349766 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0
1.6111493 -128.9128 46.8367392 16.2695668 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0
4.4452150 -886.6260 -39.4758985 -11.8393891 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
4.8127427 -919.4837 -20.5878707 5.0484597 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
7.4430980 -922.9750 -61.9924644 7.3903162 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1
2.9423640 -304.1000 74.1928265 8.8061881 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
7.4731006 -818.7589 -36.3701861 0.9047611 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0
6.9145633 -873.1602 -48.7511906 2.9905628 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0
8.1452432 -960.1706 -86.7566861 -3.8266601 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0
5.6491525 -806.6826 -5.1970955 -2.5847290 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0
4.9631104 -431.0958 38.2304783 -7.3317562 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0
5.0195884 -637.7364 36.6033970 -15.7857291 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
2.0572535 -126.6471 56.1105361 4.3121809 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1.4155678 -323.6836 28.0379861 0.5019642 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
5.1265397 -806.3648 18.8931623 -11.3137057 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
4.0440626 -985.1881 -52.7105796 0.2711801 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3.9292937 -460.6314 28.7159176 -5.5676390 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1
5.5519297 -920.9490 -54.6666336 11.3073798 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
6.6066602 -764.5409 -8.9566773 6.7656703 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0
4.8724278 -636.3959 32.4157155 -1.9847719 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
6.6680737 -492.5077 29.7465512 14.1660273 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0
5.3323513 -361.1251 66.0701838 -6.6035911 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0
5.7785910 -501.5873 33.6612013 -10.0596994 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1
5.8177098 -696.6570 -6.5258749 -8.9779439 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1
3.1737146 -481.4323 30.5937898 14.7223751 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
4.5430183 -448.3775 56.6821681 0.3558056 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
4.1506561 -494.6484 53.4217920 -9.7853098 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1
6.7889917 -812.1693 -12.2144173 2.7296950 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0
5.9574557 -920.3909 -55.5818975 11.4484562 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
2.7161561 -155.7277 73.0667246 -1.2281736 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 0
4.0774428 -403.9518 17.2004411 0.0017633 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0
4.1814511 -782.0442 -57.0979641 2.2707670 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0
3.7831268 -519.1559 57.4557391 -6.3239852 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1
6.7259874 -695.7485 -11.7674201 -5.0155353 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1
2.7740788 -159.4952 46.9305755 5.2459749 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
2.0367009 -189.8413 86.5243144 10.3101253 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1
5.0320057 -424.3282 69.8820989 -14.4348346 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0
4.8329330 -614.1126 15.4313060 3.6659116 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1
6.1305738 -968.6792 -65.3661739 6.3298947 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1
7.2423151 -982.3909 -50.7035574 7.8807227 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
2.2927310 -358.7078 62.9139857 -3.7219721 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
6.3028546 -725.9784 34.4980432 -2.7752020 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
3.2887344 -259.5360 103.7078339 -2.8405588 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0
2.7027625 -131.5311 72.6838775 8.3144635 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0
6.6450799 -607.8573 -23.2009464 16.9821817 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
3.1572504 -680.0908 8.9239272 -1.9455752 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
4.1502383 -660.9626 12.0057668 3.2436048 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
5.2788227 -876.4613 -34.5852825 -5.9741659 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0
3.8602587 -604.0464 56.7668374 0.9123535 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
5.6632613 -594.1455 5.1634830 -6.5080933 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
1.6093167 -265.8649 75.7230013 1.6495559 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
4.9598848 -972.9864 -32.3686364 -15.8227175 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0
3.6924689 -561.7527 -16.5676222 8.4374788 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
4.1496045 -586.9725 -16.5521256 2.9364318 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
3.1770919 -262.1569 69.2426116 7.4697497 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1
6.0513795 -609.6835 45.9873488 -6.9599899 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
4.2513388 -318.7826 29.7682340 10.1634312 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
2.3059660 -128.9802 118.7062102 -11.0798852 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
7.6397076 -968.5723 -49.4700896 -1.8866875 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0
4.2748906 -542.5768 -15.2501334 4.9883641 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0
5.4672137 -443.5776 18.0978724 10.0004754 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
3.5423480 -614.3733 22.6243329 -1.3604029 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
4.4193610 -887.4791 -75.1606373 -3.8117246 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
4.8418700 -314.3096 99.4946974 -0.9419145 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1
5.7148292 -325.6459 78.3777487 10.7010205 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 1
7.3732777 -900.2836 0.6122613 -2.2290941 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1
3.9460867 -623.1279 44.4171497 5.9117924 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1
5.2485869 -680.2863 36.4335920 -18.7901980 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
3.6755371 -442.6857 50.8338956 2.6783598 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
5.3041114 -358.7596 93.3888780 -1.1858880 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
1.7643515 -200.1902 56.9335703 0.0230523 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0
4.2349730 -192.8859 73.9503000 1.7476334 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1
3.5850273 -345.3207 11.8500050 24.0348552 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
6.6744098 -983.2324 -74.1859392 9.9064620 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
1.0487341 -117.1774 95.6809486 -6.5825746 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
2.9722115 -473.0769 4.7863145 8.3365702 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5.5728336 -785.9440 -45.4187275 1.7965446 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0
4.0331374 -405.2919 38.7583690 -4.6726849 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0
5.5221494 -694.8952 11.5782324 -7.7169916 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 1
8.2219863 -998.4987 -59.0167176 0.0249471 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0
8.3509921 -972.9375 -82.4387319 7.0018932 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0
9.0718419 -789.9412 -49.9597007 7.9514372 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
5.9969887 -829.8536 -57.0645696 -5.7276616 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
2.1967471 -347.5320 83.4925366 -7.7910245 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
1.8786978 -170.4598 76.6089363 2.3095989 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
6.7955412 -898.9757 -53.3123377 10.8996128 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1
2.6397827 -366.5869 23.8219972 18.3422078 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0
2.4761716 -117.6009 91.6624156 4.3775699 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 1 0
2.7620282 -321.3193 90.0314448 -6.3673192 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1
3.9981669 -635.3012 40.4601087 -13.9881532 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
1.6784543 -307.6299 53.8679606 -6.9432182 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
5.3168528 -366.5872 37.9354387 -3.5182592 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0
4.9614370 -779.1779 -32.7528509 7.9135226 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1
3.3162019 -414.3750 9.8223532 -2.6782824 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
3.8935219 -348.5650 46.6594298 -5.2218657 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0
2.5957384 -459.1439 44.6371925 5.4127360 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0
3.0193812 -466.5849 -4.0389658 10.6347311 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1
5.9325970 -796.7744 -52.1543162 2.5652785 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0
0.5605372 -129.6207 109.8888600 -3.1977250 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
2.1476524 -126.1132 105.3065194 6.9945142 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
8.2222341 -991.4187 -74.5080310 -10.4835247 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1
3.6098390 -342.6319 50.1664080 -2.8119201 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1
6.3704834 -803.0819 14.6643348 0.7765512 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
2.6932211 -280.0661 70.7817186 8.7493945 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0
3.7878156 -331.3828 90.8072955 -14.9084605 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
2.2788770 -294.3568 72.3661522 12.4735929 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
2.9695598 -511.0737 40.4136044 -5.0243332 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
4.5325140 -406.0510 49.8344878 -10.5289101 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1
6.7270428 -806.7846 -46.8956671 -4.3111070 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
3.2438143 -368.7278 54.3718915 7.7575263 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0
4.9952146 -995.1834 -68.5820506 -8.8886937 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
2.1420347 -363.5274 14.3247404 4.9225130 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
3.4192708 -325.5380 27.2364301 18.1836883 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
6.2243440 -899.4477 -7.4379304 3.2081506 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
3.7491856 -633.4045 22.1853729 6.2591259 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1.8053534 -222.1468 101.6653264 -1.5719274 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0
6.3742752 -835.1834 -59.7906432 15.3477693 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1
3.5435666 -186.7519 72.5871825 5.4440231 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1
8.0893076 -859.5472 -17.5826739 3.3208501 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
2.3536709 -319.2820 16.3794291 20.8344347 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
6.7407502 -980.2413 -74.6531371 5.3032876 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
5.9964238 -942.1617 -66.4466330 0.5934104 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1
5.7630203 -804.5622 -28.8679360 6.2931697 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
6.0202990 -799.4797 21.3267532 -19.9135718 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0
1.3743217 -147.8707 130.2987440 -0.3218381 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0
2.4007914 -152.6345 42.7503425 14.7914485 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0
4.3879314 -445.2666 5.2285786 9.0183152 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1
3.6860215 -322.1288 58.0103134 -0.6610311 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
4.0979686 -383.9283 62.5465761 -11.0891818 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
3.2971727 -565.4330 -6.8162650 8.4680298 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
5.1802420 -590.8554 51.1768779 -11.4100503 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0
3.5393674 -368.9301 52.6463586 4.5396544 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
5.6073821 -647.4521 11.2113772 9.0143981 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0
3.5405449 -198.5368 70.5714279 4.7796327 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0
6.1089959 -746.0714 29.3496158 2.8586917 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0
5.2892183 -378.6559 36.8374914 10.5861424 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
5.4184177 -642.8365 0.2579623 2.3966815 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0
6.4519395 -812.0407 -17.8040414 0.5646650 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
4.1637478 -394.9650 85.4879528 -1.4803607 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
2.5912830 -235.2796 70.7376786 -6.1382883 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1
4.7083071 -237.9939 72.3254589 13.7862600 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0
3.1318616 -244.0416 76.2726819 12.5465801 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
5.6917192 -611.9938 23.5983303 1.5378191 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
3.5596356 -346.4557 72.3955258 -2.2832487 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
3.1167645 -173.2467 92.4015212 -9.1985881 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1
4.7951828 -704.8994 15.9929271 -8.6385628 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0
2.8684667 -276.8206 29.6293054 2.0460564 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
6.4619099 -758.3410 -12.8829834 -7.1216987 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0
3.7295130 -847.5215 -25.7937012 -10.7995535 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6.1226501 -769.9430 -37.8488484 6.1118701 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
6.7451620 -659.0330 10.8134577 6.0046189 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0
5.8709844 -633.3569 22.7841700 9.1412721 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0
2.6857259 -435.7240 32.6515732 -5.7462175 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
4.7020901 -846.8846 -35.6600375 -9.0243672 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
3.2563847 -350.6548 73.2746169 0.2301095 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1
6.2602501 -710.9184 -28.6902474 -0.1669734 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0
5.3216892 -773.6597 19.9480884 -1.3770481 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1
4.1337345 -552.3141 24.3964665 -10.7495594 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0
2.1276519 -389.3827 40.0119558 -0.8566912 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
2.3878063 -134.4806 127.7279628 -3.1174046 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0
3.5805595 -474.4743 67.9269487 4.9474913 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
5.1516258 -991.0639 -66.4838056 3.1743638 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
1.9540272 -293.9069 64.2251170 -2.3794749 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
5.4387369 -452.0464 -6.9746857 10.2041564 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
2.7267795 -224.2159 73.8320524 0.3450764 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0
1.4024294 -270.7565 82.8159960 -0.2639727 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
2.9061439 -346.3795 20.6474496 12.3399123 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
5.6614825 -946.7971 -50.1395238 -1.9323210 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
4.7094960 -451.3733 37.7054795 5.8741678 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0
5.7860001 -702.6745 26.2834375 -15.6077897 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1
4.7400258 -448.4349 11.0820260 9.7958953 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0
5.4032576 -393.1903 24.9758531 -0.6811211 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1
5.5559356 -760.2688 -11.0112268 -6.5718113 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
3.8286405 -133.0760 71.4029729 3.2711065 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0
4.1173598 -400.7680 30.4253060 16.6658208 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
5.0259616 -755.3758 3.0240066 -12.4704026 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1
6.3602198 -829.9739 -49.9873944 -1.3541318 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
4.7945551 -178.3547 71.9010065 5.6440609 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0
6.6070907 -962.4281 -32.8877122 3.6592500 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
6.8104632 -898.8336 -13.4430198 -11.4335529 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0
3.2364528 -552.4238 31.8928300 -4.3407092 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
8.4139848 -965.1969 -58.4514623 2.0735835 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0
6.0287969 -505.4069 63.8844255 4.2526513 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
2.7693482 -178.7507 36.0641039 12.5744434 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1
6.1251012 -938.6275 -21.4571792 -9.4900270 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0
3.7591077 -280.0807 93.1422266 -8.1536608 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
5.6279153 -584.5386 45.2363597 -10.0231419 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0
3.1153989 -485.7655 -1.6665646 6.8913916 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0
4.5842354 -597.9286 -28.5068127 18.6548236 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0
3.2250581 -266.2258 54.0294063 6.9851155 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0
2.5211542 -372.2102 19.9783117 9.0130567 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0
3.1900046 -511.8592 27.5922984 8.6356177 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1
6.6956703 -961.8224 -63.9776697 12.8047430 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0
1.3947011 -142.2801 89.2537252 -3.2879516 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
3.0797904 -236.7595 100.7101784 0.0958775 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 1
5.2453535 -411.4603 34.0633229 2.4191925 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0
1.2806235 -226.1374 32.0869616 24.9910510 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
5.1398492 -645.4918 34.7660318 -8.6395192 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
7.3530824 -938.5942 -39.9793119 -4.1107338 1 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
6.1536843 -917.2288 -25.5846110 4.1205690 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
6.4781777 -848.0641 -27.7212534 5.4099276 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
3.3717393 -233.9077 59.8881421 15.4568324 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
4.4610721 -525.1187 27.8142055 -10.1949427 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0
4.9068722 -760.4565 11.2214087 1.2207942 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
3.3788689 -316.5194 56.5439395 13.0136453 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
5.5085377 -697.6658 25.2476174 0.6328971 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0
6.1098516 -649.8434 41.8679875 4.1814563 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
1.5546197 -302.6147 46.5596382 13.9720398 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
5.6758099 -420.1195 75.3866674 -5.9827789 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
5.5225287 -832.7628 5.0542434 2.1878864 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1
4.2762288 -488.6672 38.9340152 -4.4734592 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5.2903145 -368.7503 81.2167071 2.6479334 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0
1.8926090 -269.0603 98.9510332 -8.5513112 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
7.9165120 -962.8080 -76.2711219 -1.0277298 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1
6.5012840 -918.2298 -28.8324557 4.1761867 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1
5.7903613 -768.8439 -26.0445423 -2.6759973 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
4.8626847 -553.2674 33.9996237 1.5489389 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0
4.9112377 -661.3321 -34.8474848 6.8174528 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 0
7.6633758 -606.4368 -23.6294767 -1.3220118 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0
5.1350763 -343.3536 87.9942616 5.8694701 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
4.9273412 -782.3499 -61.6459433 -4.5523323 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0
3.8412298 -817.4859 8.4292994 -18.4205124 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
3.7086761 -773.9376 -11.3973569 -7.9007727 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
5.1435020 -573.5536 34.0642310 2.5252796 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0
5.8489542 -521.6711 -14.9460680 15.4013683 0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0
6.5868550 -805.7659 -39.8937509 3.8468786 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
4.3628865 -224.9121 88.4540694 11.7262361 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
4.0452426 -189.3878 105.8495908 8.4676670 1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0
5.1162990 -772.5271 -41.9751480 -6.9579660 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
6.5220293 -826.0873 8.1807192 2.1656532 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0
5.5674342 -572.1999 30.3507145 -11.5937395 0 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1
3.9994799 -424.6169 67.7384546 -9.5499350 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0
3.4507876 -199.4673 83.1565330 1.3761306 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1
5.1644096 -550.5504 62.8301027 -1.0473185 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
2.5104892 -324.6469 68.0106536 -0.3203623 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.6033427 -370.3285 72.3047553 -9.3496689 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0
3.6320573 -351.1549 39.7637649 13.5440953 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
3.9030197 -741.9187 -52.7113949 17.6430945 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
5.6377702 -759.0356 -40.6281660 14.3037526 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
1.4713569 -236.0450 73.3178500 1.9983017 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
5.8558071 -818.8505 14.4749253 2.0391142 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
7.0892847 -796.1936 22.6534459 -0.8901069 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0
3.5717653 -420.1485 72.0845640 -11.9842598 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
4.8112795 -585.9868 20.9361435 -1.4389155 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
4.8244638 -871.2624 -47.0202806 -0.1205405 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
3.9067661 -576.3148 7.7166108 12.2230089 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
3.1890818 -338.3413 79.2152187 4.5065417 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0
3.4693338 -551.4472 21.9722936 -3.0938907 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0
6.5477029 -837.6881 -3.4906987 4.6555818 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
7.0982946 -956.2131 -82.8831689 6.9430551 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
4.5955914 -313.9811 84.9854543 3.6232352 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0
4.1048883 -172.7788 45.0290085 21.4141825 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1
4.4773459 -498.8541 44.9093011 2.3548682 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
6.0221234 -771.1293 -37.1641137 -4.7383848 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0
5.1064796 -261.6977 64.1452754 12.4844691 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0
1.5581819 -180.8481 124.8672625 3.8756988 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7.4350426 -813.4660 -27.5121497 -0.3223569 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
5.7311956 -501.2304 28.8038369 -3.7955796 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0
6.5088626 -483.2401 60.6086426 -8.8034870 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0
4.0728802 -552.2808 56.0808735 -2.3832119 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1.6381576 -142.2456 120.5295747 3.0857237 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0
6.2315163 -824.2011 13.5099614 1.4949069 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0
2.5145947 -296.3491 95.3152329 -5.0594703 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
4.7702831 -484.6200 2.4587454 11.0010240 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0
5.8097099 -736.9180 13.2485095 -2.1607827 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0.4128649 -167.8157 73.5292741 -4.6857662 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1
5.6339134 -717.3513 4.4306316 -9.9919152 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0
3.8116203 -265.8546 100.8150469 3.0803615 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1
5.5566373 -554.6663 43.0191758 -13.8356197 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1
4.3604842 -224.8033 44.6209591 14.5407885 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0
5.7537008 -833.7362 -49.0867082 0.9249284 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1
7.2557624 -795.9713 -30.7603690 -9.6116820 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0
5.0860318 -454.5704 9.8965110 8.7866987 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

model Workflow

We continue with a workflow to tie the model and feature engineering process together using the workflows package.

Show the code
mars_wf <- workflow() |> 
  add_model(mars_spec) |> 
  add_recipe(mars_rec)

Parameter Grid

The tuning parameters are updated, the maximum interaction, prod_degree used should not be more than 3rd degree, as there’s rarely any benefit when it’s above such degree. num_terms is set to include also possible interaction terms, as data includes 10 features. The grid table can be seen in Table 3

Show the code
yield_grid <- extract_parameter_set_dials(mars_spec) |> 
  update(
    prod_degree = prod_degree(range = c(1, 3)),
    num_terms = num_terms(range = c(2, 20))
  ) |> 
  grid_regular(levels = 20)

yield_grid |> 
  knitr::kable()
Table 3: Grid table
num_terms prod_degree
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
20 2
2 3
3 3
4 3
5 3
6 3
7 3
8 3
9 3
10 3
11 3
12 3
13 3
14 3
15 3
16 3
17 3
18 3
19 3
20 3

Model Tuning

Show the code
crop_tune <- tune_grid(
  mars_wf,
  mars_rec,
  resamples = crop_fold,
  grid = yield_grid,
  control = control_grid(save_pred = FALSE, save_workflow = TRUE)
)

Tune Evaluation

After tuning the result can be seen in Table 4 and Figure 4

Show the code
collect_metrics(crop_tune) |> 
  knitr::kable()
Table 4: Result from tuning
num_terms prod_degree .metric .estimator mean n std_err .config
2 1 rmse standard 1.1081261 5 0.0125847 Preprocessor1_Model01
2 1 rsq standard 0.5731602 5 0.0095423 Preprocessor1_Model01
3 1 rmse standard 0.8147771 5 0.0166209 Preprocessor1_Model02
3 1 rsq standard 0.7689832 5 0.0095183 Preprocessor1_Model02
4 1 rmse standard 0.5506631 5 0.0244822 Preprocessor1_Model03
4 1 rsq standard 0.8938372 5 0.0098961 Preprocessor1_Model03
5 1 rmse standard 0.5131969 5 0.0021955 Preprocessor1_Model04
5 1 rsq standard 0.9084858 5 0.0007566 Preprocessor1_Model04
6 1 rmse standard 0.5054024 5 0.0002356 Preprocessor1_Model05
6 1 rsq standard 0.9112499 5 0.0001432 Preprocessor1_Model05
7 1 rmse standard 0.5015983 5 0.0002469 Preprocessor1_Model06
7 1 rsq standard 0.9125810 5 0.0001505 Preprocessor1_Model06
8 1 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model07
8 1 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model07
9 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model08
9 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model08
10 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model09
10 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model09
11 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model10
11 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model10
12 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model11
12 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model11
13 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model12
13 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model12
14 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model13
14 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model13
15 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model14
15 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model14
16 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model15
16 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model15
17 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model16
17 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model16
18 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model17
18 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model17
19 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model18
19 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model18
20 1 rmse standard 0.5005388 5 0.0002499 Preprocessor1_Model19
20 1 rsq standard 0.9129500 5 0.0001428 Preprocessor1_Model19
2 2 rmse standard 1.1081261 5 0.0125847 Preprocessor1_Model20
2 2 rsq standard 0.5731602 5 0.0095423 Preprocessor1_Model20
3 2 rmse standard 0.8147771 5 0.0166209 Preprocessor1_Model21
3 2 rsq standard 0.7689832 5 0.0095183 Preprocessor1_Model21
4 2 rmse standard 0.5506631 5 0.0244822 Preprocessor1_Model22
4 2 rsq standard 0.8938372 5 0.0098961 Preprocessor1_Model22
5 2 rmse standard 0.5131969 5 0.0021955 Preprocessor1_Model23
5 2 rsq standard 0.9084858 5 0.0007566 Preprocessor1_Model23
6 2 rmse standard 0.5054024 5 0.0002356 Preprocessor1_Model24
6 2 rsq standard 0.9112499 5 0.0001432 Preprocessor1_Model24
7 2 rmse standard 0.5015983 5 0.0002469 Preprocessor1_Model25
7 2 rsq standard 0.9125810 5 0.0001505 Preprocessor1_Model25
8 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model26
8 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model26
9 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model27
9 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model27
10 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model28
10 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model28
11 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model29
11 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model29
12 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model30
12 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model30
13 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model31
13 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model31
14 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model32
14 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model32
15 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model33
15 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model33
16 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model34
16 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model34
17 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model35
17 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model35
18 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model36
18 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model36
19 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model37
19 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model37
20 2 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model38
20 2 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model38
2 3 rmse standard 1.1081261 5 0.0125847 Preprocessor1_Model39
2 3 rsq standard 0.5731602 5 0.0095423 Preprocessor1_Model39
3 3 rmse standard 0.8147771 5 0.0166209 Preprocessor1_Model40
3 3 rsq standard 0.7689832 5 0.0095183 Preprocessor1_Model40
4 3 rmse standard 0.5506631 5 0.0244822 Preprocessor1_Model41
4 3 rsq standard 0.8938372 5 0.0098961 Preprocessor1_Model41
5 3 rmse standard 0.5131969 5 0.0021955 Preprocessor1_Model42
5 3 rsq standard 0.9084858 5 0.0007566 Preprocessor1_Model42
6 3 rmse standard 0.5054024 5 0.0002356 Preprocessor1_Model43
6 3 rsq standard 0.9112499 5 0.0001432 Preprocessor1_Model43
7 3 rmse standard 0.5015983 5 0.0002469 Preprocessor1_Model44
7 3 rsq standard 0.9125810 5 0.0001505 Preprocessor1_Model44
8 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model45
8 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model45
9 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model46
9 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model46
10 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model47
10 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model47
11 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model48
11 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model48
12 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model49
12 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model49
13 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model50
13 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model50
14 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model51
14 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model51
15 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model52
15 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model52
16 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model53
16 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model53
17 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model54
17 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model54
18 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model55
18 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model55
19 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model56
19 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model56
20 3 rmse standard 0.5005376 5 0.0002504 Preprocessor1_Model57
20 3 rsq standard 0.9129504 5 0.0001428 Preprocessor1_Model57
Show the code
collect_metrics(crop_tune) |> 
  ggplot(aes(num_terms, mean, col = factor(prod_degree))) +
  geom_point() +
  geom_errorbar(
    aes(ymin = mean - std_err, ymax = mean + std_err),
    position = "dodge"
  ) +
  labs(
    title = "Tune Result from MARS (Earth) Model",
    x = "Number of Terms Used in Model",
    col = "Degree of Interaction"
  ) +
  facet_wrap(~.metric, scales = "free_y")
Figure 4

Making Use of Best tune Parameter

The original workflow which was initially set will be extracted. This is a very crucial step when comparing performance across different ML method.

Show the code
mars_wf_extract <- extract_workflow(crop_tune)
mars_wf_extract
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: mars()

── Preprocessor ────────────────────────────────────────────────────────────────
3 Recipe Steps

• step_mutate()
• step_pca()
• step_dummy()

── Model ───────────────────────────────────────────────────────────────────────
MARS Model Specification (regression)

Main Arguments:
  num_terms = tune()
  prod_degree = tune()

Computational engine: earth 

To get the absolute model performance, rmse will be used instead of rsq when selecting the best tune parameter.

Show the code
best_params <- select_best(crop_tune, metric = "rmse")

Next, we combine both workflow and parameters together to get a finalized workflow.

Show the code
crop_mars_wf <- finalize_workflow(
  mars_wf_extract, 
  best_params
)

crop_mars_wf
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: mars()

── Preprocessor ────────────────────────────────────────────────────────────────
3 Recipe Steps

• step_mutate()
• step_pca()
• step_dummy()

── Model ───────────────────────────────────────────────────────────────────────
MARS Model Specification (regression)

Main Arguments:
  num_terms = 8
  prod_degree = 1

Computational engine: earth 

Final Model FIt

After getting our finalized we make the final model fit on the split object of our data.

Show the code
crop_final_fit <- last_fit(
  crop_mars_wf,
  crop_yield_split
)

Model Evaluation

We collect the metrics from our final model showing the predicted and observed data on the test of the split in Table 5. A goodness of fit test can be seen in Figure 5

Show the code
crop_final_fit |> 
  collect_metrics()
# A tibble: 2 × 4
  .metric .estimator .estimate .config             
  <chr>   <chr>          <dbl> <chr>               
1 rmse    standard       0.500 Preprocessor1_Model1
2 rsq     standard       0.913 Preprocessor1_Model1
Show the code
test_pred <- crop_final_fit |> 
  collect_predictions()

head(test_pred, n = 1000) |> 
  knitr::kable()
Table 5: Predictions from model vs observed data
.pred id .row yield_tons_per_hectare .config
1.3402491 train/test split 3 1.1274433 Preprocessor1_Model1
5.9398453 train/test split 6 5.8984163 Preprocessor1_Model1
5.5221602 train/test split 8 5.8295423 Preprocessor1_Model1
2.9433855 train/test split 9 2.9437165 Preprocessor1_Model1
3.5284231 train/test split 10 3.7072931 Preprocessor1_Model1
6.0464413 train/test split 13 6.5251862 Preprocessor1_Model1
4.4493048 train/test split 17 4.3668806 Preprocessor1_Model1
5.2481223 train/test split 18 4.8589244 Preprocessor1_Model1
2.6380672 train/test split 26 2.3322549 Preprocessor1_Model1
5.1309009 train/test split 27 4.8765873 Preprocessor1_Model1
5.3131356 train/test split 31 5.1135877 Preprocessor1_Model1
4.9197328 train/test split 34 4.8981808 Preprocessor1_Model1
2.8384163 train/test split 36 3.6074964 Preprocessor1_Model1
4.8977568 train/test split 37 4.6964255 Preprocessor1_Model1
6.2654790 train/test split 40 6.3147863 Preprocessor1_Model1
2.8305119 train/test split 41 2.3683217 Preprocessor1_Model1
2.6008310 train/test split 44 2.9680630 Preprocessor1_Model1
6.2206373 train/test split 50 6.6549495 Preprocessor1_Model1
5.2424521 train/test split 53 5.4931742 Preprocessor1_Model1
6.3134873 train/test split 60 6.4119307 Preprocessor1_Model1
6.4194002 train/test split 61 5.8181997 Preprocessor1_Model1
5.1829557 train/test split 62 5.0202922 Preprocessor1_Model1
1.0425583 train/test split 70 0.8055127 Preprocessor1_Model1
6.3946198 train/test split 77 6.4800590 Preprocessor1_Model1
6.5472177 train/test split 78 6.5631304 Preprocessor1_Model1
3.8775188 train/test split 79 4.2637995 Preprocessor1_Model1
1.6082854 train/test split 80 0.6166115 Preprocessor1_Model1
4.0536182 train/test split 85 3.1344321 Preprocessor1_Model1
4.0335644 train/test split 86 5.0959326 Preprocessor1_Model1
2.7124701 train/test split 90 3.1455141 Preprocessor1_Model1
1.3059498 train/test split 92 1.2245024 Preprocessor1_Model1
4.7878771 train/test split 93 5.5784995 Preprocessor1_Model1
3.7401010 train/test split 100 3.6265013 Preprocessor1_Model1
5.5019699 train/test split 102 4.8367270 Preprocessor1_Model1
5.5172825 train/test split 107 5.1682150 Preprocessor1_Model1
2.6759737 train/test split 112 3.0500421 Preprocessor1_Model1
7.9102788 train/test split 115 7.6623721 Preprocessor1_Model1
6.0018563 train/test split 122 6.7327003 Preprocessor1_Model1
4.7593909 train/test split 123 3.9539290 Preprocessor1_Model1
6.5135058 train/test split 128 7.4148925 Preprocessor1_Model1
4.0732332 train/test split 133 3.3718108 Preprocessor1_Model1
5.9533235 train/test split 134 5.3263671 Preprocessor1_Model1
5.4547671 train/test split 141 5.9333616 Preprocessor1_Model1
5.0391360 train/test split 142 5.7451909 Preprocessor1_Model1
5.6403392 train/test split 143 5.8798318 Preprocessor1_Model1
1.0293026 train/test split 145 0.9621414 Preprocessor1_Model1
4.3215914 train/test split 147 3.8281463 Preprocessor1_Model1
4.9149370 train/test split 148 5.4503221 Preprocessor1_Model1
4.8466212 train/test split 149 4.8023728 Preprocessor1_Model1
3.6504194 train/test split 155 3.4862208 Preprocessor1_Model1
4.6595649 train/test split 157 4.5032000 Preprocessor1_Model1
4.3021745 train/test split 159 4.0032180 Preprocessor1_Model1
6.6094801 train/test split 160 7.2341936 Preprocessor1_Model1
3.6622055 train/test split 164 3.5919133 Preprocessor1_Model1
6.1565469 train/test split 165 5.6127836 Preprocessor1_Model1
2.4943377 train/test split 180 2.2483458 Preprocessor1_Model1
3.0030471 train/test split 188 3.0542928 Preprocessor1_Model1
7.8780592 train/test split 191 8.1147600 Preprocessor1_Model1
4.5695917 train/test split 196 3.4621095 Preprocessor1_Model1
2.6693367 train/test split 197 2.5492481 Preprocessor1_Model1
4.3271426 train/test split 198 4.5067078 Preprocessor1_Model1
5.1380509 train/test split 200 4.6743089 Preprocessor1_Model1
5.5297051 train/test split 202 4.8231473 Preprocessor1_Model1
6.5762263 train/test split 204 5.7822921 Preprocessor1_Model1
5.7697253 train/test split 207 5.1601046 Preprocessor1_Model1
2.7056179 train/test split 208 2.5595962 Preprocessor1_Model1
4.3631661 train/test split 210 3.9324384 Preprocessor1_Model1
7.8769264 train/test split 212 7.9809983 Preprocessor1_Model1
4.0707733 train/test split 215 3.7542764 Preprocessor1_Model1
3.7466605 train/test split 216 4.6427379 Preprocessor1_Model1
5.2702066 train/test split 217 4.7346597 Preprocessor1_Model1
1.2995343 train/test split 220 1.3232243 Preprocessor1_Model1
3.3083821 train/test split 222 2.8475063 Preprocessor1_Model1
4.5629477 train/test split 226 4.2505988 Preprocessor1_Model1
7.1540006 train/test split 227 7.1388154 Preprocessor1_Model1
6.1800928 train/test split 228 6.7160288 Preprocessor1_Model1
2.3148275 train/test split 233 1.7568555 Preprocessor1_Model1
1.3475430 train/test split 240 1.9787821 Preprocessor1_Model1
3.0186386 train/test split 241 2.9054304 Preprocessor1_Model1
3.6960169 train/test split 242 4.0782917 Preprocessor1_Model1
3.6615831 train/test split 243 4.3320452 Preprocessor1_Model1
6.5362816 train/test split 244 6.5064709 Preprocessor1_Model1
5.3106879 train/test split 251 6.3427708 Preprocessor1_Model1
5.2297283 train/test split 252 4.9904727 Preprocessor1_Model1
5.4200544 train/test split 260 6.0740674 Preprocessor1_Model1
5.2181713 train/test split 264 5.7269896 Preprocessor1_Model1
8.0041245 train/test split 269 8.2097962 Preprocessor1_Model1
2.4102305 train/test split 272 2.7276966 Preprocessor1_Model1
3.4060229 train/test split 279 3.9758837 Preprocessor1_Model1
4.4206152 train/test split 281 4.4820545 Preprocessor1_Model1
2.9887767 train/test split 283 3.1960797 Preprocessor1_Model1
3.6876722 train/test split 287 3.3020495 Preprocessor1_Model1
8.1125925 train/test split 288 7.4329464 Preprocessor1_Model1
2.3714568 train/test split 294 2.0716482 Preprocessor1_Model1
5.1288160 train/test split 297 5.1225016 Preprocessor1_Model1
7.6091151 train/test split 301 7.4094933 Preprocessor1_Model1
2.9619525 train/test split 302 2.8322017 Preprocessor1_Model1
1.2821707 train/test split 304 1.3521265 Preprocessor1_Model1
1.6441430 train/test split 307 0.9272761 Preprocessor1_Model1
4.9985205 train/test split 309 4.8434830 Preprocessor1_Model1
2.9421963 train/test split 312 3.4080261 Preprocessor1_Model1
6.5742483 train/test split 321 6.6016305 Preprocessor1_Model1
2.6923284 train/test split 328 2.9788611 Preprocessor1_Model1
4.3916751 train/test split 332 5.2531037 Preprocessor1_Model1
1.5241675 train/test split 334 1.6126739 Preprocessor1_Model1
6.9735116 train/test split 336 6.2645059 Preprocessor1_Model1
1.1635528 train/test split 339 1.1681240 Preprocessor1_Model1
1.4743539 train/test split 341 1.6572527 Preprocessor1_Model1
5.0319129 train/test split 342 5.1601442 Preprocessor1_Model1
4.7810921 train/test split 347 3.7247250 Preprocessor1_Model1
4.4646479 train/test split 350 4.2393580 Preprocessor1_Model1
4.9476521 train/test split 351 4.6139119 Preprocessor1_Model1
4.2280014 train/test split 355 3.9390599 Preprocessor1_Model1
5.4408357 train/test split 357 6.2070703 Preprocessor1_Model1
4.0656814 train/test split 360 4.5942937 Preprocessor1_Model1
4.1966504 train/test split 361 4.2748848 Preprocessor1_Model1
5.5626857 train/test split 363 5.6168513 Preprocessor1_Model1
4.1917404 train/test split 368 4.0432257 Preprocessor1_Model1
2.5047105 train/test split 369 1.5442522 Preprocessor1_Model1
3.3252664 train/test split 370 3.8490280 Preprocessor1_Model1
4.7105861 train/test split 373 5.2783259 Preprocessor1_Model1
4.8983506 train/test split 379 5.1504590 Preprocessor1_Model1
7.0038959 train/test split 382 7.1170363 Preprocessor1_Model1
3.6856763 train/test split 384 3.3249334 Preprocessor1_Model1
3.4797937 train/test split 391 3.8142162 Preprocessor1_Model1
6.5888809 train/test split 393 6.2412911 Preprocessor1_Model1
6.4713280 train/test split 394 6.5546353 Preprocessor1_Model1
3.7347323 train/test split 398 3.5537411 Preprocessor1_Model1
6.3854144 train/test split 399 7.0369377 Preprocessor1_Model1
6.1441474 train/test split 408 6.7705652 Preprocessor1_Model1
5.8067029 train/test split 414 4.7564128 Preprocessor1_Model1
2.4168558 train/test split 418 2.3632790 Preprocessor1_Model1
3.1474530 train/test split 420 3.2314496 Preprocessor1_Model1
5.5710718 train/test split 421 5.5654029 Preprocessor1_Model1
3.6945855 train/test split 422 3.4936565 Preprocessor1_Model1
6.2186870 train/test split 429 6.1269051 Preprocessor1_Model1
5.0301423 train/test split 430 5.0639347 Preprocessor1_Model1
2.4080279 train/test split 432 2.2543915 Preprocessor1_Model1
6.7599045 train/test split 434 6.7337711 Preprocessor1_Model1
5.0719740 train/test split 435 4.9505891 Preprocessor1_Model1
1.3661688 train/test split 438 0.9611130 Preprocessor1_Model1
6.7779148 train/test split 446 8.2000992 Preprocessor1_Model1
6.6813767 train/test split 450 7.0679133 Preprocessor1_Model1
4.7694037 train/test split 454 5.7096012 Preprocessor1_Model1
5.3810704 train/test split 456 5.0767879 Preprocessor1_Model1
6.3619234 train/test split 464 5.9169219 Preprocessor1_Model1
6.4482486 train/test split 467 7.3867335 Preprocessor1_Model1
5.9989608 train/test split 469 4.7715963 Preprocessor1_Model1
2.9481238 train/test split 473 2.9480814 Preprocessor1_Model1
1.3759196 train/test split 477 1.8039785 Preprocessor1_Model1
5.2424912 train/test split 480 5.3207109 Preprocessor1_Model1
4.0606563 train/test split 481 3.5097518 Preprocessor1_Model1
2.7778702 train/test split 482 2.3677704 Preprocessor1_Model1
5.4115764 train/test split 488 5.2627378 Preprocessor1_Model1
4.2377779 train/test split 489 4.2161295 Preprocessor1_Model1
2.7727638 train/test split 491 1.9478134 Preprocessor1_Model1
7.6311416 train/test split 492 7.8330519 Preprocessor1_Model1
6.9257922 train/test split 494 6.8498653 Preprocessor1_Model1
5.5622778 train/test split 501 4.8926683 Preprocessor1_Model1
4.3280101 train/test split 502 4.1459583 Preprocessor1_Model1
5.8300608 train/test split 504 5.7056469 Preprocessor1_Model1
2.7407559 train/test split 521 2.8700818 Preprocessor1_Model1
6.5840867 train/test split 522 6.5834582 Preprocessor1_Model1
3.2274737 train/test split 523 2.8031361 Preprocessor1_Model1
3.0595693 train/test split 527 3.5259476 Preprocessor1_Model1
7.2056132 train/test split 537 6.6945222 Preprocessor1_Model1
4.8723366 train/test split 543 5.1759182 Preprocessor1_Model1
5.6042716 train/test split 544 5.2286334 Preprocessor1_Model1
7.4113592 train/test split 551 6.7382400 Preprocessor1_Model1
7.3427499 train/test split 552 8.1409281 Preprocessor1_Model1
4.6371023 train/test split 559 4.5975932 Preprocessor1_Model1
1.1167718 train/test split 560 1.1297513 Preprocessor1_Model1
4.9709642 train/test split 561 4.5709657 Preprocessor1_Model1
4.2790580 train/test split 563 2.7858012 Preprocessor1_Model1
4.3799662 train/test split 566 4.9241781 Preprocessor1_Model1
5.9401454 train/test split 568 5.8664662 Preprocessor1_Model1
2.5649586 train/test split 569 2.7735562 Preprocessor1_Model1
5.5073714 train/test split 570 5.7493197 Preprocessor1_Model1
4.8509058 train/test split 572 5.5009584 Preprocessor1_Model1
5.1139749 train/test split 574 5.2996095 Preprocessor1_Model1
2.4293453 train/test split 575 2.0649413 Preprocessor1_Model1
6.8816002 train/test split 579 6.5368217 Preprocessor1_Model1
2.8620235 train/test split 580 3.6659901 Preprocessor1_Model1
4.4128630 train/test split 583 4.8054830 Preprocessor1_Model1
1.3371503 train/test split 585 1.2119495 Preprocessor1_Model1
6.1752889 train/test split 587 5.9497474 Preprocessor1_Model1
3.8623333 train/test split 588 4.3200701 Preprocessor1_Model1
6.2969531 train/test split 596 6.8940667 Preprocessor1_Model1
4.6996112 train/test split 598 5.0533907 Preprocessor1_Model1
6.4111707 train/test split 601 6.2389380 Preprocessor1_Model1
6.4070433 train/test split 603 6.5791668 Preprocessor1_Model1
2.4510115 train/test split 605 2.5490218 Preprocessor1_Model1
3.3190561 train/test split 610 2.4465316 Preprocessor1_Model1
4.9344872 train/test split 618 4.8950205 Preprocessor1_Model1
6.6419928 train/test split 619 6.2979205 Preprocessor1_Model1
2.9087421 train/test split 621 2.6889805 Preprocessor1_Model1
2.8819758 train/test split 622 3.6440374 Preprocessor1_Model1
6.7098570 train/test split 623 5.4725669 Preprocessor1_Model1
2.7598275 train/test split 624 3.2060131 Preprocessor1_Model1
6.4501506 train/test split 625 6.5131616 Preprocessor1_Model1
3.5564170 train/test split 626 2.9072698 Preprocessor1_Model1
6.5224083 train/test split 628 5.8672376 Preprocessor1_Model1
7.1790443 train/test split 629 6.8605012 Preprocessor1_Model1
7.9245300 train/test split 630 7.5269298 Preprocessor1_Model1
5.7806381 train/test split 633 5.7051072 Preprocessor1_Model1
4.6072099 train/test split 634 5.0120632 Preprocessor1_Model1
3.8544259 train/test split 635 4.0971454 Preprocessor1_Model1
4.1475236 train/test split 638 3.8220381 Preprocessor1_Model1
3.3618609 train/test split 639 2.3407757 Preprocessor1_Model1
5.4913895 train/test split 646 5.0761760 Preprocessor1_Model1
4.7366199 train/test split 651 5.5467685 Preprocessor1_Model1
1.8064493 train/test split 657 1.8395541 Preprocessor1_Model1
4.9890961 train/test split 661 4.5820340 Preprocessor1_Model1
4.6762783 train/test split 670 4.3270502 Preprocessor1_Model1
5.6195748 train/test split 671 6.0240709 Preprocessor1_Model1
2.3957836 train/test split 674 2.4058534 Preprocessor1_Model1
6.1878869 train/test split 682 5.7225500 Preprocessor1_Model1
4.3948864 train/test split 688 4.1043602 Preprocessor1_Model1
2.6709422 train/test split 690 2.2533319 Preprocessor1_Model1
4.5044774 train/test split 698 5.3272669 Preprocessor1_Model1
6.5951273 train/test split 700 6.0400879 Preprocessor1_Model1
6.5035476 train/test split 702 6.9809290 Preprocessor1_Model1
1.2652120 train/test split 711 1.6165474 Preprocessor1_Model1
2.6792206 train/test split 712 3.0311156 Preprocessor1_Model1
3.1740378 train/test split 713 2.7352374 Preprocessor1_Model1
6.0904903 train/test split 714 6.5676968 Preprocessor1_Model1
4.5966753 train/test split 725 3.9668657 Preprocessor1_Model1
4.9750965 train/test split 727 4.2452741 Preprocessor1_Model1
3.9409506 train/test split 728 3.5383189 Preprocessor1_Model1
5.3544811 train/test split 729 5.4787174 Preprocessor1_Model1
6.0882798 train/test split 734 6.7431691 Preprocessor1_Model1
7.5137169 train/test split 736 7.5336646 Preprocessor1_Model1
5.2007207 train/test split 740 5.2233386 Preprocessor1_Model1
2.7916051 train/test split 742 1.7462741 Preprocessor1_Model1
7.7356392 train/test split 744 8.3862962 Preprocessor1_Model1
5.3753745 train/test split 748 5.5289727 Preprocessor1_Model1
4.7979513 train/test split 750 5.0013762 Preprocessor1_Model1
5.7159317 train/test split 755 5.7564766 Preprocessor1_Model1
2.8082439 train/test split 762 2.3954561 Preprocessor1_Model1
4.8267068 train/test split 763 3.9463858 Preprocessor1_Model1
3.4629509 train/test split 765 3.2942095 Preprocessor1_Model1
3.7241323 train/test split 766 3.5469961 Preprocessor1_Model1
6.6221296 train/test split 767 6.1377587 Preprocessor1_Model1
2.3158103 train/test split 770 1.6465621 Preprocessor1_Model1
5.0002468 train/test split 773 4.5090377 Preprocessor1_Model1
4.7841390 train/test split 774 5.2599878 Preprocessor1_Model1
4.1434929 train/test split 777 3.8120994 Preprocessor1_Model1
6.0047621 train/test split 778 5.7679181 Preprocessor1_Model1
3.0748156 train/test split 785 3.7764382 Preprocessor1_Model1
4.5183685 train/test split 787 4.5924021 Preprocessor1_Model1
3.0888236 train/test split 788 3.1356607 Preprocessor1_Model1
4.6689192 train/test split 789 4.0078991 Preprocessor1_Model1
4.2294366 train/test split 790 3.9235714 Preprocessor1_Model1
2.7955441 train/test split 800 2.9113098 Preprocessor1_Model1
4.1812292 train/test split 811 4.1279959 Preprocessor1_Model1
5.4830696 train/test split 815 5.4430589 Preprocessor1_Model1
7.1851624 train/test split 817 6.4976319 Preprocessor1_Model1
1.5170701 train/test split 819 1.4612952 Preprocessor1_Model1
2.3858318 train/test split 822 2.6184187 Preprocessor1_Model1
4.5725284 train/test split 823 4.4502410 Preprocessor1_Model1
4.6139047 train/test split 825 5.0028171 Preprocessor1_Model1
4.8202173 train/test split 826 4.4765749 Preprocessor1_Model1
2.7187719 train/test split 827 2.3665216 Preprocessor1_Model1
2.5201850 train/test split 837 3.0659051 Preprocessor1_Model1
4.2469051 train/test split 845 4.5936490 Preprocessor1_Model1
5.5931893 train/test split 846 4.8871753 Preprocessor1_Model1
5.6558486 train/test split 847 5.3403292 Preprocessor1_Model1
4.1250807 train/test split 853 3.8067297 Preprocessor1_Model1
5.5047377 train/test split 861 5.6065687 Preprocessor1_Model1
4.3101854 train/test split 864 4.2338495 Preprocessor1_Model1
4.2533163 train/test split 865 3.6899145 Preprocessor1_Model1
6.5298274 train/test split 866 5.7908440 Preprocessor1_Model1
4.4976878 train/test split 867 5.4414915 Preprocessor1_Model1
4.3277330 train/test split 869 4.4084285 Preprocessor1_Model1
5.7364426 train/test split 876 6.3256689 Preprocessor1_Model1
3.5679932 train/test split 877 3.1399825 Preprocessor1_Model1
3.5384292 train/test split 881 4.0836455 Preprocessor1_Model1
5.0629000 train/test split 883 4.7984831 Preprocessor1_Model1
4.4704597 train/test split 884 4.7818132 Preprocessor1_Model1
1.7167088 train/test split 886 0.9772871 Preprocessor1_Model1
5.7506277 train/test split 887 5.7727492 Preprocessor1_Model1
4.5933583 train/test split 888 4.2776301 Preprocessor1_Model1
2.9957340 train/test split 889 3.3892994 Preprocessor1_Model1
5.0032073 train/test split 890 4.2808841 Preprocessor1_Model1
5.2081934 train/test split 891 5.2263150 Preprocessor1_Model1
4.8024236 train/test split 898 5.3695306 Preprocessor1_Model1
3.9713776 train/test split 899 3.3617204 Preprocessor1_Model1
5.6982414 train/test split 902 6.1775464 Preprocessor1_Model1
3.7125963 train/test split 906 3.3463267 Preprocessor1_Model1
4.8810150 train/test split 908 5.5517442 Preprocessor1_Model1
1.2695782 train/test split 919 1.3936892 Preprocessor1_Model1
2.6181137 train/test split 921 2.5513613 Preprocessor1_Model1
4.4178492 train/test split 924 3.6692884 Preprocessor1_Model1
3.9501374 train/test split 925 3.2618521 Preprocessor1_Model1
7.0451417 train/test split 927 7.6078213 Preprocessor1_Model1
4.8680195 train/test split 929 4.3529869 Preprocessor1_Model1
2.5979435 train/test split 931 2.7149104 Preprocessor1_Model1
3.2705150 train/test split 933 3.7996882 Preprocessor1_Model1
1.2186695 train/test split 935 0.9795276 Preprocessor1_Model1
7.2775940 train/test split 937 6.7459460 Preprocessor1_Model1
2.3199218 train/test split 941 2.0598001 Preprocessor1_Model1
2.7290650 train/test split 943 2.1148080 Preprocessor1_Model1
6.6596016 train/test split 945 6.3480510 Preprocessor1_Model1
3.4249809 train/test split 947 2.9242694 Preprocessor1_Model1
6.2442313 train/test split 955 4.7391200 Preprocessor1_Model1
6.4834678 train/test split 956 6.2197066 Preprocessor1_Model1
4.5779156 train/test split 957 4.9330815 Preprocessor1_Model1
5.0238564 train/test split 966 4.4433924 Preprocessor1_Model1
8.0587986 train/test split 967 7.0992344 Preprocessor1_Model1
4.6534793 train/test split 968 3.6213426 Preprocessor1_Model1
4.0459045 train/test split 969 4.2089005 Preprocessor1_Model1
2.8514973 train/test split 970 2.4368372 Preprocessor1_Model1
2.6890094 train/test split 973 2.4019745 Preprocessor1_Model1
4.5080739 train/test split 975 4.7845012 Preprocessor1_Model1
6.5450507 train/test split 984 6.7632246 Preprocessor1_Model1
7.0335667 train/test split 986 6.2795928 Preprocessor1_Model1
6.3866636 train/test split 989 6.6537450 Preprocessor1_Model1
4.7018316 train/test split 991 4.8943184 Preprocessor1_Model1
3.3761705 train/test split 992 3.7670797 Preprocessor1_Model1
6.9206382 train/test split 994 7.2939924 Preprocessor1_Model1
2.4549576 train/test split 997 2.1736186 Preprocessor1_Model1
3.5543198 train/test split 999 3.4993218 Preprocessor1_Model1
4.4292498 train/test split 1000 4.2690711 Preprocessor1_Model1
5.5311610 train/test split 1002 5.6719529 Preprocessor1_Model1
4.7460796 train/test split 1004 4.1916027 Preprocessor1_Model1
5.1383010 train/test split 1007 6.1242725 Preprocessor1_Model1
4.7935311 train/test split 1008 5.0953440 Preprocessor1_Model1
3.0775379 train/test split 1009 3.0651815 Preprocessor1_Model1
3.7105129 train/test split 1010 3.3445250 Preprocessor1_Model1
5.7962705 train/test split 1015 5.6470525 Preprocessor1_Model1
5.0621926 train/test split 1020 4.0925511 Preprocessor1_Model1
5.3737436 train/test split 1025 4.9531711 Preprocessor1_Model1
5.4861865 train/test split 1028 5.0195550 Preprocessor1_Model1
6.1760617 train/test split 1029 6.6423880 Preprocessor1_Model1
6.1426523 train/test split 1030 7.0956302 Preprocessor1_Model1
3.9558042 train/test split 1031 4.8141253 Preprocessor1_Model1
4.8117741 train/test split 1033 4.5538862 Preprocessor1_Model1
4.5613702 train/test split 1036 5.1149749 Preprocessor1_Model1
4.1190987 train/test split 1040 3.5881248 Preprocessor1_Model1
1.8795459 train/test split 1042 1.2838171 Preprocessor1_Model1
5.7485888 train/test split 1043 5.7415194 Preprocessor1_Model1
1.1940806 train/test split 1048 0.8460361 Preprocessor1_Model1
5.8157660 train/test split 1049 6.0499043 Preprocessor1_Model1
4.5645257 train/test split 1053 4.9332310 Preprocessor1_Model1
5.4404293 train/test split 1057 6.0228008 Preprocessor1_Model1
3.6103247 train/test split 1071 3.2399776 Preprocessor1_Model1
6.0928961 train/test split 1073 6.3349206 Preprocessor1_Model1
6.7083856 train/test split 1075 8.3435655 Preprocessor1_Model1
2.5137321 train/test split 1076 1.3198992 Preprocessor1_Model1
4.4116024 train/test split 1079 4.1133011 Preprocessor1_Model1
5.9729364 train/test split 1080 5.9318623 Preprocessor1_Model1
4.2956789 train/test split 1086 4.7617254 Preprocessor1_Model1
4.5144606 train/test split 1089 3.9091135 Preprocessor1_Model1
6.2210613 train/test split 1095 5.5276296 Preprocessor1_Model1
5.4726111 train/test split 1097 5.4705623 Preprocessor1_Model1
4.9807411 train/test split 1107 4.0786455 Preprocessor1_Model1
4.5940750 train/test split 1113 4.4133014 Preprocessor1_Model1
1.7029833 train/test split 1119 1.3517011 Preprocessor1_Model1
2.7770347 train/test split 1126 3.1235018 Preprocessor1_Model1
7.3487825 train/test split 1127 7.7880874 Preprocessor1_Model1
4.1209185 train/test split 1131 5.0111238 Preprocessor1_Model1
3.5057831 train/test split 1133 3.2855193 Preprocessor1_Model1
3.6278526 train/test split 1138 4.2347399 Preprocessor1_Model1
6.0816549 train/test split 1140 6.8597710 Preprocessor1_Model1
7.6527998 train/test split 1144 8.3900262 Preprocessor1_Model1
1.1581657 train/test split 1148 1.5277010 Preprocessor1_Model1
2.1494688 train/test split 1151 0.8788206 Preprocessor1_Model1
5.4917774 train/test split 1155 5.4072648 Preprocessor1_Model1
4.1222815 train/test split 1156 3.5492884 Preprocessor1_Model1
3.0098141 train/test split 1159 4.0445614 Preprocessor1_Model1
6.0645841 train/test split 1161 5.9846549 Preprocessor1_Model1
4.1601881 train/test split 1165 3.9756401 Preprocessor1_Model1
7.6240494 train/test split 1166 7.0187167 Preprocessor1_Model1
5.8920112 train/test split 1168 6.1870133 Preprocessor1_Model1
4.4729944 train/test split 1176 5.2288616 Preprocessor1_Model1
6.9740172 train/test split 1190 6.1087332 Preprocessor1_Model1
1.8974795 train/test split 1191 2.8058186 Preprocessor1_Model1
2.4063910 train/test split 1192 1.9235869 Preprocessor1_Model1
5.4734188 train/test split 1193 5.6305272 Preprocessor1_Model1
5.7067479 train/test split 1195 5.6350943 Preprocessor1_Model1
4.3985542 train/test split 1198 4.7904612 Preprocessor1_Model1
6.6888111 train/test split 1207 6.5747006 Preprocessor1_Model1
3.0937847 train/test split 1211 3.2129271 Preprocessor1_Model1
6.3766008 train/test split 1215 7.0920465 Preprocessor1_Model1
3.8985188 train/test split 1216 3.3136976 Preprocessor1_Model1
5.6630955 train/test split 1217 5.2124544 Preprocessor1_Model1
5.4850483 train/test split 1221 5.7612030 Preprocessor1_Model1
6.9841915 train/test split 1223 7.0175166 Preprocessor1_Model1
4.8449372 train/test split 1224 4.8261333 Preprocessor1_Model1
3.9109045 train/test split 1227 3.9219403 Preprocessor1_Model1
3.5721860 train/test split 1233 3.7874033 Preprocessor1_Model1
4.2241099 train/test split 1234 4.3068655 Preprocessor1_Model1
4.5096508 train/test split 1238 3.6899924 Preprocessor1_Model1
5.5396166 train/test split 1239 4.7950384 Preprocessor1_Model1
5.5912394 train/test split 1240 6.0423176 Preprocessor1_Model1
3.1666899 train/test split 1242 2.9722814 Preprocessor1_Model1
5.4862296 train/test split 1248 5.5743709 Preprocessor1_Model1
4.0472183 train/test split 1250 3.8950607 Preprocessor1_Model1
4.8127261 train/test split 1252 4.3806050 Preprocessor1_Model1
4.0840289 train/test split 1257 4.3116597 Preprocessor1_Model1
5.9842757 train/test split 1258 6.5173522 Preprocessor1_Model1
6.9715319 train/test split 1259 6.5687002 Preprocessor1_Model1
5.1430126 train/test split 1261 4.3638511 Preprocessor1_Model1
5.8681693 train/test split 1262 5.8855858 Preprocessor1_Model1
3.5845277 train/test split 1263 3.5273644 Preprocessor1_Model1
3.5290011 train/test split 1264 3.9370319 Preprocessor1_Model1
6.5520365 train/test split 1266 6.9022258 Preprocessor1_Model1
6.1161428 train/test split 1270 5.9176668 Preprocessor1_Model1
2.3411857 train/test split 1271 3.0732647 Preprocessor1_Model1
4.3268359 train/test split 1272 4.3467312 Preprocessor1_Model1
7.5272222 train/test split 1274 7.3420225 Preprocessor1_Model1
4.0404903 train/test split 1276 4.4724170 Preprocessor1_Model1
4.1561847 train/test split 1280 4.0274414 Preprocessor1_Model1
3.2289783 train/test split 1281 3.5222301 Preprocessor1_Model1
1.8283264 train/test split 1282 1.4390950 Preprocessor1_Model1
4.5815250 train/test split 1293 5.2877730 Preprocessor1_Model1
5.4708639 train/test split 1295 5.3103202 Preprocessor1_Model1
4.7042037 train/test split 1300 5.6020606 Preprocessor1_Model1
6.8945885 train/test split 1302 6.8504749 Preprocessor1_Model1
3.2051472 train/test split 1304 3.5899634 Preprocessor1_Model1
1.6407883 train/test split 1308 2.8920887 Preprocessor1_Model1
7.3251018 train/test split 1309 7.5668601 Preprocessor1_Model1
7.1374707 train/test split 1310 7.2762496 Preprocessor1_Model1
6.0918167 train/test split 1312 6.5104388 Preprocessor1_Model1
4.5237670 train/test split 1318 5.8195480 Preprocessor1_Model1
4.1831630 train/test split 1319 4.0880753 Preprocessor1_Model1
3.8321332 train/test split 1322 4.8720853 Preprocessor1_Model1
2.2203971 train/test split 1325 1.4444573 Preprocessor1_Model1
7.8682592 train/test split 1328 7.9318720 Preprocessor1_Model1
1.4811358 train/test split 1331 1.0263812 Preprocessor1_Model1
5.1126461 train/test split 1333 5.0046162 Preprocessor1_Model1
3.3296405 train/test split 1334 3.0495375 Preprocessor1_Model1
4.3542714 train/test split 1337 5.0466663 Preprocessor1_Model1
2.5137912 train/test split 1339 3.2018218 Preprocessor1_Model1
4.4361172 train/test split 1342 4.7927471 Preprocessor1_Model1
3.1572426 train/test split 1343 3.2955867 Preprocessor1_Model1
3.8284983 train/test split 1344 4.0618828 Preprocessor1_Model1
2.1902843 train/test split 1346 2.5864392 Preprocessor1_Model1
3.0126684 train/test split 1347 3.4075795 Preprocessor1_Model1
7.6068780 train/test split 1348 7.2981753 Preprocessor1_Model1
5.2262378 train/test split 1351 5.4838466 Preprocessor1_Model1
3.5020894 train/test split 1352 3.3116674 Preprocessor1_Model1
6.1571600 train/test split 1355 6.8855888 Preprocessor1_Model1
3.8595229 train/test split 1358 3.6000836 Preprocessor1_Model1
3.2770117 train/test split 1361 3.0011973 Preprocessor1_Model1
5.9378863 train/test split 1363 5.5388780 Preprocessor1_Model1
2.6864603 train/test split 1367 2.7653171 Preprocessor1_Model1
4.9210333 train/test split 1368 5.0496333 Preprocessor1_Model1
5.0924695 train/test split 1374 5.1151574 Preprocessor1_Model1
5.5436138 train/test split 1375 5.9578745 Preprocessor1_Model1
6.3799105 train/test split 1376 5.6096945 Preprocessor1_Model1
6.7378580 train/test split 1381 6.4147385 Preprocessor1_Model1
3.4422579 train/test split 1386 2.9529319 Preprocessor1_Model1
3.0727206 train/test split 1387 3.6490325 Preprocessor1_Model1
4.1451798 train/test split 1388 3.6715995 Preprocessor1_Model1
2.6123651 train/test split 1396 2.9957719 Preprocessor1_Model1
4.0056683 train/test split 1402 4.4130135 Preprocessor1_Model1
5.8369210 train/test split 1403 6.3945393 Preprocessor1_Model1
6.8370429 train/test split 1404 7.7126278 Preprocessor1_Model1
4.9773437 train/test split 1405 4.2289698 Preprocessor1_Model1
1.8634746 train/test split 1409 2.3576552 Preprocessor1_Model1
2.7029283 train/test split 1413 2.9772135 Preprocessor1_Model1
1.2260438 train/test split 1415 0.9455504 Preprocessor1_Model1
6.5422693 train/test split 1419 6.7273217 Preprocessor1_Model1
6.3581396 train/test split 1422 6.0425269 Preprocessor1_Model1
4.0496852 train/test split 1424 4.2485258 Preprocessor1_Model1
5.5506478 train/test split 1427 5.3118323 Preprocessor1_Model1
3.6689928 train/test split 1428 2.8399040 Preprocessor1_Model1
4.9496329 train/test split 1433 5.5995083 Preprocessor1_Model1
3.3292983 train/test split 1435 3.9951160 Preprocessor1_Model1
6.0189655 train/test split 1438 6.3094798 Preprocessor1_Model1
6.5197853 train/test split 1440 5.8586563 Preprocessor1_Model1
5.4866175 train/test split 1444 5.8243748 Preprocessor1_Model1
6.1554232 train/test split 1448 6.5106816 Preprocessor1_Model1
5.9805115 train/test split 1451 5.4357386 Preprocessor1_Model1
2.7568331 train/test split 1453 2.9017019 Preprocessor1_Model1
7.6717765 train/test split 1455 8.0064630 Preprocessor1_Model1
6.3743278 train/test split 1458 6.4111720 Preprocessor1_Model1
2.6290614 train/test split 1460 1.9058707 Preprocessor1_Model1
5.8128089 train/test split 1470 6.1146801 Preprocessor1_Model1
3.6895680 train/test split 1472 4.3988590 Preprocessor1_Model1
7.0959546 train/test split 1474 8.0082428 Preprocessor1_Model1
4.0324486 train/test split 1475 4.4885673 Preprocessor1_Model1
2.2516420 train/test split 1480 1.9323845 Preprocessor1_Model1
4.5813205 train/test split 1482 4.2342810 Preprocessor1_Model1
4.5648282 train/test split 1483 3.7855844 Preprocessor1_Model1
7.3149610 train/test split 1486 7.7386215 Preprocessor1_Model1
4.9597262 train/test split 1490 5.4137675 Preprocessor1_Model1
2.9454381 train/test split 1492 3.2070221 Preprocessor1_Model1
3.9116408 train/test split 1497 3.9696297 Preprocessor1_Model1
6.0511768 train/test split 1498 6.4002352 Preprocessor1_Model1
0.8781412 train/test split 1501 0.9296281 Preprocessor1_Model1
3.2439701 train/test split 1503 2.9939645 Preprocessor1_Model1
6.1298259 train/test split 1505 6.3777329 Preprocessor1_Model1
3.8849915 train/test split 1507 3.3098189 Preprocessor1_Model1
4.6120939 train/test split 1511 4.6116652 Preprocessor1_Model1
6.4696203 train/test split 1513 6.2836536 Preprocessor1_Model1
3.5666650 train/test split 1514 3.2975365 Preprocessor1_Model1
5.4022562 train/test split 1517 4.9748216 Preprocessor1_Model1
4.5893187 train/test split 1524 4.5882721 Preprocessor1_Model1
5.4592412 train/test split 1527 6.3207851 Preprocessor1_Model1
4.2675211 train/test split 1529 4.1761135 Preprocessor1_Model1
8.0519051 train/test split 1532 7.7786533 Preprocessor1_Model1
6.3262950 train/test split 1538 5.9269580 Preprocessor1_Model1
6.6694400 train/test split 1547 5.8758599 Preprocessor1_Model1
4.9519670 train/test split 1548 4.4413933 Preprocessor1_Model1
2.2164159 train/test split 1549 2.2015375 Preprocessor1_Model1
6.9164657 train/test split 1550 7.1777302 Preprocessor1_Model1
2.1483205 train/test split 1553 1.6950091 Preprocessor1_Model1
7.0940228 train/test split 1561 7.4329231 Preprocessor1_Model1
3.6242537 train/test split 1564 3.9992213 Preprocessor1_Model1
2.4205481 train/test split 1566 2.2960546 Preprocessor1_Model1
3.3378210 train/test split 1570 3.5311024 Preprocessor1_Model1
6.8065302 train/test split 1572 7.2467737 Preprocessor1_Model1
2.6668532 train/test split 1579 3.3432183 Preprocessor1_Model1
6.9249191 train/test split 1588 6.5758472 Preprocessor1_Model1
4.5140463 train/test split 1589 4.2390172 Preprocessor1_Model1
2.6135264 train/test split 1598 1.4540275 Preprocessor1_Model1
4.2908599 train/test split 1606 5.4197017 Preprocessor1_Model1
4.4294339 train/test split 1607 4.7722143 Preprocessor1_Model1
1.7959757 train/test split 1622 2.3741029 Preprocessor1_Model1
4.8967323 train/test split 1627 4.4614582 Preprocessor1_Model1
6.6712793 train/test split 1633 6.5199435 Preprocessor1_Model1
6.8093930 train/test split 1638 6.5748824 Preprocessor1_Model1
5.3699622 train/test split 1641 4.7496760 Preprocessor1_Model1
3.5961163 train/test split 1642 2.9390501 Preprocessor1_Model1
5.1657638 train/test split 1644 5.9258866 Preprocessor1_Model1
5.9994002 train/test split 1654 6.2994831 Preprocessor1_Model1
2.3328989 train/test split 1659 2.5823093 Preprocessor1_Model1
4.3140816 train/test split 1669 4.2180190 Preprocessor1_Model1
5.3169888 train/test split 1674 5.6430836 Preprocessor1_Model1
3.8823721 train/test split 1675 3.9267266 Preprocessor1_Model1
1.3368731 train/test split 1678 1.8138060 Preprocessor1_Model1
4.1210332 train/test split 1681 4.4724448 Preprocessor1_Model1
3.8122862 train/test split 1683 3.9522603 Preprocessor1_Model1
4.1590273 train/test split 1690 4.3993544 Preprocessor1_Model1
5.2638828 train/test split 1695 6.0488033 Preprocessor1_Model1
8.0209598 train/test split 1696 7.3193047 Preprocessor1_Model1
2.0252078 train/test split 1698 1.8525113 Preprocessor1_Model1
6.2574354 train/test split 1703 6.4667771 Preprocessor1_Model1
6.7726924 train/test split 1706 7.1047813 Preprocessor1_Model1
2.4782085 train/test split 1713 1.8846272 Preprocessor1_Model1
2.0480359 train/test split 1716 1.4433604 Preprocessor1_Model1
4.5255550 train/test split 1720 4.0908767 Preprocessor1_Model1
2.5969829 train/test split 1721 2.2522601 Preprocessor1_Model1
4.7897206 train/test split 1726 5.5759893 Preprocessor1_Model1
3.0477209 train/test split 1727 3.8822615 Preprocessor1_Model1
4.0054193 train/test split 1732 3.5810260 Preprocessor1_Model1
2.3116175 train/test split 1733 2.2503471 Preprocessor1_Model1
4.3296121 train/test split 1737 4.4909965 Preprocessor1_Model1
5.8019032 train/test split 1741 5.8458476 Preprocessor1_Model1
5.2814628 train/test split 1743 5.5530436 Preprocessor1_Model1
3.0656733 train/test split 1744 2.9050427 Preprocessor1_Model1
6.8956119 train/test split 1745 6.4068937 Preprocessor1_Model1
6.2809455 train/test split 1752 6.7055130 Preprocessor1_Model1
4.3023904 train/test split 1756 3.6416337 Preprocessor1_Model1
5.5786014 train/test split 1757 5.4610054 Preprocessor1_Model1
5.9496324 train/test split 1760 5.5388786 Preprocessor1_Model1
2.4325727 train/test split 1764 2.2871704 Preprocessor1_Model1
3.2345598 train/test split 1766 3.3513429 Preprocessor1_Model1
4.7352938 train/test split 1768 4.8772228 Preprocessor1_Model1
3.1414639 train/test split 1773 3.3076738 Preprocessor1_Model1
7.3043269 train/test split 1784 6.1759717 Preprocessor1_Model1
6.0074658 train/test split 1789 5.3278579 Preprocessor1_Model1
2.5447550 train/test split 1799 2.1832737 Preprocessor1_Model1
4.4265992 train/test split 1804 4.0205532 Preprocessor1_Model1
4.8784904 train/test split 1809 4.3225948 Preprocessor1_Model1
7.2216273 train/test split 1811 7.5050141 Preprocessor1_Model1
3.6609080 train/test split 1812 3.8834565 Preprocessor1_Model1
4.1024349 train/test split 1816 3.7068998 Preprocessor1_Model1
3.8643961 train/test split 1827 4.2191721 Preprocessor1_Model1
4.2889603 train/test split 1828 4.7403852 Preprocessor1_Model1
5.3839307 train/test split 1831 5.4611426 Preprocessor1_Model1
3.8166597 train/test split 1842 3.7455416 Preprocessor1_Model1
5.6717979 train/test split 1846 5.4738770 Preprocessor1_Model1
3.6046426 train/test split 1848 3.0469588 Preprocessor1_Model1
4.1796260 train/test split 1857 3.6610268 Preprocessor1_Model1
4.1646752 train/test split 1858 4.3575710 Preprocessor1_Model1
4.6529721 train/test split 1860 4.8850697 Preprocessor1_Model1
7.8023439 train/test split 1861 8.3929078 Preprocessor1_Model1
4.0871531 train/test split 1862 4.1684639 Preprocessor1_Model1
6.3509075 train/test split 1864 6.8759351 Preprocessor1_Model1
4.9485693 train/test split 1869 4.3062260 Preprocessor1_Model1
6.8223960 train/test split 1871 6.9366760 Preprocessor1_Model1
5.4460690 train/test split 1872 5.1326031 Preprocessor1_Model1
6.9443418 train/test split 1875 7.7637012 Preprocessor1_Model1
6.0217755 train/test split 1876 6.1833757 Preprocessor1_Model1
4.4289777 train/test split 1880 3.6395083 Preprocessor1_Model1
7.4198014 train/test split 1882 7.0406727 Preprocessor1_Model1
6.9395924 train/test split 1885 7.1216582 Preprocessor1_Model1
3.8681763 train/test split 1889 4.5045995 Preprocessor1_Model1
4.4361738 train/test split 1892 4.3670261 Preprocessor1_Model1
5.2324035 train/test split 1893 4.8159364 Preprocessor1_Model1
5.8128352 train/test split 1900 5.0026660 Preprocessor1_Model1
5.0861786 train/test split 1901 6.0983433 Preprocessor1_Model1
3.5595939 train/test split 1902 3.2826512 Preprocessor1_Model1
3.3194689 train/test split 1908 3.5595496 Preprocessor1_Model1
4.0858215 train/test split 1910 3.6046850 Preprocessor1_Model1
8.1746116 train/test split 1911 8.3097097 Preprocessor1_Model1
2.9536787 train/test split 1913 2.7977082 Preprocessor1_Model1
4.9353428 train/test split 1918 3.8705440 Preprocessor1_Model1
5.6666529 train/test split 1922 5.7653396 Preprocessor1_Model1
3.6526650 train/test split 1923 4.0364922 Preprocessor1_Model1
2.7520893 train/test split 1929 2.3790286 Preprocessor1_Model1
2.0952060 train/test split 1931 2.6765036 Preprocessor1_Model1
4.9823322 train/test split 1938 5.1676877 Preprocessor1_Model1
3.2334720 train/test split 1942 3.7003209 Preprocessor1_Model1
4.5798074 train/test split 1947 4.1702903 Preprocessor1_Model1
3.9951602 train/test split 1948 4.0656372 Preprocessor1_Model1
2.7475188 train/test split 1950 2.5778809 Preprocessor1_Model1
3.3090963 train/test split 1951 2.9438519 Preprocessor1_Model1
7.0117806 train/test split 1958 6.7005573 Preprocessor1_Model1
6.8417839 train/test split 1959 7.8843285 Preprocessor1_Model1
5.6061919 train/test split 1972 4.8182114 Preprocessor1_Model1
3.6637228 train/test split 1977 4.1273255 Preprocessor1_Model1
5.3803338 train/test split 1980 5.4376363 Preprocessor1_Model1
5.2480358 train/test split 1983 4.9280200 Preprocessor1_Model1
3.4122023 train/test split 1987 3.9382601 Preprocessor1_Model1
4.3441093 train/test split 1988 5.2461895 Preprocessor1_Model1
1.7535596 train/test split 1989 1.3818721 Preprocessor1_Model1
5.6537927 train/test split 1990 5.3197982 Preprocessor1_Model1
3.4962502 train/test split 1993 3.7109824 Preprocessor1_Model1
2.6133428 train/test split 1999 2.7405951 Preprocessor1_Model1
3.5828298 train/test split 2003 3.5077018 Preprocessor1_Model1
5.3070152 train/test split 2006 4.9199507 Preprocessor1_Model1
2.9358570 train/test split 2011 4.0130787 Preprocessor1_Model1
7.4557054 train/test split 2012 7.8839075 Preprocessor1_Model1
2.4814339 train/test split 2013 2.7268428 Preprocessor1_Model1
3.0459458 train/test split 2016 2.2776628 Preprocessor1_Model1
1.5396812 train/test split 2020 1.0628858 Preprocessor1_Model1
3.9020246 train/test split 2021 4.2001627 Preprocessor1_Model1
6.5263939 train/test split 2024 5.9085100 Preprocessor1_Model1
6.3353576 train/test split 2029 7.0904559 Preprocessor1_Model1
2.0182109 train/test split 2030 2.6556782 Preprocessor1_Model1
2.7668630 train/test split 2034 3.1538203 Preprocessor1_Model1
2.7222417 train/test split 2038 2.3441173 Preprocessor1_Model1
4.9241195 train/test split 2043 4.5093715 Preprocessor1_Model1
6.1976622 train/test split 2052 5.6284849 Preprocessor1_Model1
6.0566191 train/test split 2056 6.2293798 Preprocessor1_Model1
6.4615589 train/test split 2058 7.2387758 Preprocessor1_Model1
6.4841810 train/test split 2059 6.7082595 Preprocessor1_Model1
2.6996399 train/test split 2060 2.9771475 Preprocessor1_Model1
5.4496981 train/test split 2065 5.3082974 Preprocessor1_Model1
4.7498664 train/test split 2067 4.7357904 Preprocessor1_Model1
6.2002696 train/test split 2071 6.2946918 Preprocessor1_Model1
3.2048652 train/test split 2074 3.6829797 Preprocessor1_Model1
6.2325366 train/test split 2078 6.0148271 Preprocessor1_Model1
4.7819455 train/test split 2081 5.2678974 Preprocessor1_Model1
2.4797807 train/test split 2082 2.4869641 Preprocessor1_Model1
2.4064210 train/test split 2086 2.5083575 Preprocessor1_Model1
5.8181698 train/test split 2090 5.9680574 Preprocessor1_Model1
2.2473842 train/test split 2096 1.7532148 Preprocessor1_Model1
6.1290104 train/test split 2104 5.6473506 Preprocessor1_Model1
2.5298897 train/test split 2109 1.5056802 Preprocessor1_Model1
3.7397187 train/test split 2111 3.2485037 Preprocessor1_Model1
5.1744831 train/test split 2113 6.0386235 Preprocessor1_Model1
3.4043751 train/test split 2115 3.5466733 Preprocessor1_Model1
7.8422581 train/test split 2116 8.2626472 Preprocessor1_Model1
5.2860504 train/test split 2117 5.8083499 Preprocessor1_Model1
5.1906612 train/test split 2118 5.1135987 Preprocessor1_Model1
6.1116383 train/test split 2131 6.3016650 Preprocessor1_Model1
5.0252632 train/test split 2132 5.1357557 Preprocessor1_Model1
4.1135766 train/test split 2135 4.6352538 Preprocessor1_Model1
4.9558508 train/test split 2137 4.6851068 Preprocessor1_Model1
4.0842820 train/test split 2140 3.4134135 Preprocessor1_Model1
5.1457236 train/test split 2142 4.9906056 Preprocessor1_Model1
4.1705193 train/test split 2143 4.9382043 Preprocessor1_Model1
3.1783324 train/test split 2144 3.8997028 Preprocessor1_Model1
3.3353083 train/test split 2147 2.8859582 Preprocessor1_Model1
6.6429035 train/test split 2154 6.5842972 Preprocessor1_Model1
6.6477605 train/test split 2162 6.4708603 Preprocessor1_Model1
1.7573509 train/test split 2165 1.8362612 Preprocessor1_Model1
5.6145338 train/test split 2167 5.4690729 Preprocessor1_Model1
4.7378302 train/test split 2170 4.6014699 Preprocessor1_Model1
4.9463672 train/test split 2182 4.4977592 Preprocessor1_Model1
5.3215088 train/test split 2183 4.2727872 Preprocessor1_Model1
3.5134953 train/test split 2185 3.8423091 Preprocessor1_Model1
6.7749400 train/test split 2188 6.6957072 Preprocessor1_Model1
4.4068234 train/test split 2194 5.1073079 Preprocessor1_Model1
5.9227253 train/test split 2198 5.9558794 Preprocessor1_Model1
6.4614561 train/test split 2206 6.7285063 Preprocessor1_Model1
5.6609427 train/test split 2207 5.3085166 Preprocessor1_Model1
3.9357698 train/test split 2209 3.4487406 Preprocessor1_Model1
3.6267399 train/test split 2210 3.5685144 Preprocessor1_Model1
2.6931180 train/test split 2212 3.1118853 Preprocessor1_Model1
6.4787335 train/test split 2214 6.6557963 Preprocessor1_Model1
6.3312306 train/test split 2215 7.0734404 Preprocessor1_Model1
4.9200445 train/test split 2217 5.5312144 Preprocessor1_Model1
6.5916568 train/test split 2218 5.9769508 Preprocessor1_Model1
3.6656796 train/test split 2220 4.1917855 Preprocessor1_Model1
6.8369701 train/test split 2223 7.4981137 Preprocessor1_Model1
3.5978712 train/test split 2224 3.3070873 Preprocessor1_Model1
4.9589236 train/test split 2228 4.8299205 Preprocessor1_Model1
4.6296262 train/test split 2232 4.9493450 Preprocessor1_Model1
1.8726198 train/test split 2236 2.3879961 Preprocessor1_Model1
2.3029316 train/test split 2241 1.8899735 Preprocessor1_Model1
6.7253205 train/test split 2242 6.4690948 Preprocessor1_Model1
4.5236370 train/test split 2246 4.1044813 Preprocessor1_Model1
3.0321379 train/test split 2253 2.8502622 Preprocessor1_Model1
6.1092093 train/test split 2262 6.2374078 Preprocessor1_Model1
3.7276774 train/test split 2270 3.2740113 Preprocessor1_Model1
4.2920873 train/test split 2278 4.6802263 Preprocessor1_Model1
7.4085000 train/test split 2279 7.5380730 Preprocessor1_Model1
7.5065098 train/test split 2280 7.7598312 Preprocessor1_Model1
3.6988369 train/test split 2287 3.7788914 Preprocessor1_Model1
3.2812787 train/test split 2290 3.8551377 Preprocessor1_Model1
5.0180914 train/test split 2293 5.2314084 Preprocessor1_Model1
5.5729481 train/test split 2295 5.5189709 Preprocessor1_Model1
4.5033729 train/test split 2296 4.5923321 Preprocessor1_Model1
2.6792019 train/test split 2298 3.3077839 Preprocessor1_Model1
3.3446158 train/test split 2303 3.0217493 Preprocessor1_Model1
6.7910342 train/test split 2306 7.4436359 Preprocessor1_Model1
8.2231612 train/test split 2309 7.8846307 Preprocessor1_Model1
6.8147867 train/test split 2310 7.2087123 Preprocessor1_Model1
6.0668911 train/test split 2311 6.3930091 Preprocessor1_Model1
5.4165338 train/test split 2313 6.0728524 Preprocessor1_Model1
5.4444934 train/test split 2320 6.6682755 Preprocessor1_Model1
2.3537587 train/test split 2321 1.9215502 Preprocessor1_Model1
5.4871180 train/test split 2326 5.1858219 Preprocessor1_Model1
2.4741999 train/test split 2328 2.1284549 Preprocessor1_Model1
6.2716843 train/test split 2329 6.3195971 Preprocessor1_Model1
7.8165627 train/test split 2331 7.8077230 Preprocessor1_Model1
2.7903466 train/test split 2332 2.8187198 Preprocessor1_Model1
3.7942509 train/test split 2338 3.6953698 Preprocessor1_Model1
3.3404161 train/test split 2341 3.5394638 Preprocessor1_Model1
1.6620794 train/test split 2343 2.4689217 Preprocessor1_Model1
3.7134649 train/test split 2344 3.9414051 Preprocessor1_Model1
4.0880768 train/test split 2353 4.6680679 Preprocessor1_Model1
5.8029815 train/test split 2356 6.7453526 Preprocessor1_Model1
4.8716888 train/test split 2359 4.6994694 Preprocessor1_Model1
3.4136927 train/test split 2360 1.8662936 Preprocessor1_Model1
7.5123867 train/test split 2364 7.4970924 Preprocessor1_Model1
1.5753425 train/test split 2368 1.6707585 Preprocessor1_Model1
2.6470259 train/test split 2369 1.6677123 Preprocessor1_Model1
3.4175496 train/test split 2371 3.8779781 Preprocessor1_Model1
5.4866233 train/test split 2373 5.8390020 Preprocessor1_Model1
5.8581648 train/test split 2379 5.9340728 Preprocessor1_Model1
6.9405747 train/test split 2380 6.4968229 Preprocessor1_Model1
4.1442607 train/test split 2389 3.4406778 Preprocessor1_Model1
5.7428066 train/test split 2400 5.5838883 Preprocessor1_Model1
6.5197607 train/test split 2402 6.1054171 Preprocessor1_Model1
2.5711255 train/test split 2403 2.8164708 Preprocessor1_Model1
4.2350352 train/test split 2407 4.4089266 Preprocessor1_Model1
5.8134731 train/test split 2408 5.2628132 Preprocessor1_Model1
6.5599508 train/test split 2411 6.5803158 Preprocessor1_Model1
5.3719919 train/test split 2416 5.1758059 Preprocessor1_Model1
2.4941638 train/test split 2417 2.1013917 Preprocessor1_Model1
5.5156888 train/test split 2419 5.6555978 Preprocessor1_Model1
3.5555754 train/test split 2426 3.5931913 Preprocessor1_Model1
5.9403517 train/test split 2430 6.6355896 Preprocessor1_Model1
5.7176202 train/test split 2439 5.6155855 Preprocessor1_Model1
2.3302215 train/test split 2442 2.2757864 Preprocessor1_Model1
4.3091983 train/test split 2450 3.2426902 Preprocessor1_Model1
2.7619824 train/test split 2454 2.9062983 Preprocessor1_Model1
6.7437046 train/test split 2455 6.5107992 Preprocessor1_Model1
2.6337104 train/test split 2458 1.4977065 Preprocessor1_Model1
4.0477793 train/test split 2459 4.1781790 Preprocessor1_Model1
4.7610821 train/test split 2461 4.9479167 Preprocessor1_Model1
4.5358908 train/test split 2466 4.7695288 Preprocessor1_Model1
6.5529459 train/test split 2469 6.6680175 Preprocessor1_Model1
4.5977597 train/test split 2474 4.0331421 Preprocessor1_Model1
5.9322084 train/test split 2475 5.7062018 Preprocessor1_Model1
2.5996692 train/test split 2477 2.8213100 Preprocessor1_Model1
8.1785673 train/test split 2480 8.7443284 Preprocessor1_Model1
6.7363807 train/test split 2483 7.8061311 Preprocessor1_Model1
1.7491613 train/test split 2487 1.3017421 Preprocessor1_Model1
4.6369060 train/test split 2488 4.0034420 Preprocessor1_Model1
4.3134279 train/test split 2495 3.7738226 Preprocessor1_Model1
5.8066150 train/test split 2497 5.8416512 Preprocessor1_Model1
5.2440403 train/test split 2502 4.5825585 Preprocessor1_Model1
1.2240428 train/test split 2507 1.1231159 Preprocessor1_Model1
5.8992081 train/test split 2509 6.2838433 Preprocessor1_Model1
4.8136044 train/test split 2510 4.7573647 Preprocessor1_Model1
4.3906581 train/test split 2511 4.3382336 Preprocessor1_Model1
4.1406745 train/test split 2513 3.8210722 Preprocessor1_Model1
2.6423705 train/test split 2516 2.3968140 Preprocessor1_Model1
6.0434768 train/test split 2518 5.2276691 Preprocessor1_Model1
4.2198981 train/test split 2526 4.4741420 Preprocessor1_Model1
5.9397247 train/test split 2529 6.0264293 Preprocessor1_Model1
2.5749076 train/test split 2537 1.9558111 Preprocessor1_Model1
2.4362945 train/test split 2539 1.7140969 Preprocessor1_Model1
2.8698926 train/test split 2540 3.6258626 Preprocessor1_Model1
2.9356931 train/test split 2541 2.0322945 Preprocessor1_Model1
3.6994065 train/test split 2543 4.1318725 Preprocessor1_Model1
3.5544553 train/test split 2544 3.8312213 Preprocessor1_Model1
4.7175078 train/test split 2546 4.7320243 Preprocessor1_Model1
6.0637813 train/test split 2554 5.6842796 Preprocessor1_Model1
6.2138186 train/test split 2557 6.3032525 Preprocessor1_Model1
6.6031600 train/test split 2559 5.8754997 Preprocessor1_Model1
6.1570014 train/test split 2560 6.8157922 Preprocessor1_Model1
3.6402807 train/test split 2561 3.3022305 Preprocessor1_Model1
3.5313223 train/test split 2565 3.7840733 Preprocessor1_Model1
6.1412441 train/test split 2568 6.0421127 Preprocessor1_Model1
4.7415890 train/test split 2573 5.8167107 Preprocessor1_Model1
5.5328277 train/test split 2574 5.9788186 Preprocessor1_Model1
4.0161405 train/test split 2578 4.2426976 Preprocessor1_Model1
5.4860270 train/test split 2581 5.9067205 Preprocessor1_Model1
2.7362305 train/test split 2589 2.5341152 Preprocessor1_Model1
3.8646302 train/test split 2595 3.3088631 Preprocessor1_Model1
4.0965790 train/test split 2598 3.1638063 Preprocessor1_Model1
2.6496571 train/test split 2602 3.3321603 Preprocessor1_Model1
2.9926090 train/test split 2603 3.3597786 Preprocessor1_Model1
5.6839546 train/test split 2619 6.5909071 Preprocessor1_Model1
5.1894461 train/test split 2623 4.9936893 Preprocessor1_Model1
4.3051747 train/test split 2624 3.3427619 Preprocessor1_Model1
3.6649376 train/test split 2629 3.0590888 Preprocessor1_Model1
6.0851569 train/test split 2630 6.2256936 Preprocessor1_Model1
5.6924368 train/test split 2633 5.1398699 Preprocessor1_Model1
2.7139973 train/test split 2635 2.4303665 Preprocessor1_Model1
3.6604625 train/test split 2641 3.8488216 Preprocessor1_Model1
5.1832509 train/test split 2643 5.9282893 Preprocessor1_Model1
3.7920495 train/test split 2649 3.8302336 Preprocessor1_Model1
3.2986407 train/test split 2650 4.8099906 Preprocessor1_Model1
6.2497523 train/test split 2651 6.0742996 Preprocessor1_Model1
3.3080887 train/test split 2652 2.8126419 Preprocessor1_Model1
5.3113912 train/test split 2653 5.7908726 Preprocessor1_Model1
6.8983359 train/test split 2655 7.4134986 Preprocessor1_Model1
6.5925409 train/test split 2661 7.1334891 Preprocessor1_Model1
3.6275638 train/test split 2672 3.5893602 Preprocessor1_Model1
4.9615605 train/test split 2673 4.3984028 Preprocessor1_Model1
5.3206735 train/test split 2677 4.4268701 Preprocessor1_Model1
5.4363838 train/test split 2678 5.3371064 Preprocessor1_Model1
4.2678802 train/test split 2682 4.5327809 Preprocessor1_Model1
7.5478678 train/test split 2685 8.0067571 Preprocessor1_Model1
5.9742686 train/test split 2690 6.1267591 Preprocessor1_Model1
2.6873000 train/test split 2697 2.8823169 Preprocessor1_Model1
3.4154243 train/test split 2698 2.7939654 Preprocessor1_Model1
7.1564044 train/test split 2701 6.2874838 Preprocessor1_Model1
7.7476498 train/test split 2702 7.2248049 Preprocessor1_Model1
5.3337257 train/test split 2703 5.4397558 Preprocessor1_Model1
5.9091767 train/test split 2705 5.2144664 Preprocessor1_Model1
6.8179414 train/test split 2710 7.5394777 Preprocessor1_Model1
3.6886239 train/test split 2711 3.4021905 Preprocessor1_Model1
4.0723461 train/test split 2713 4.8098465 Preprocessor1_Model1
5.2055559 train/test split 2721 5.3074678 Preprocessor1_Model1
6.6347958 train/test split 2722 7.2814445 Preprocessor1_Model1
6.8513073 train/test split 2725 7.2640943 Preprocessor1_Model1
5.1431516 train/test split 2726 5.0827006 Preprocessor1_Model1
6.8908797 train/test split 2728 7.0644372 Preprocessor1_Model1
5.2845076 train/test split 2729 4.3091607 Preprocessor1_Model1
6.0140970 train/test split 2732 5.1867192 Preprocessor1_Model1
4.7406464 train/test split 2746 4.9930954 Preprocessor1_Model1
5.7597680 train/test split 2754 5.5537708 Preprocessor1_Model1
4.5148992 train/test split 2766 4.7358772 Preprocessor1_Model1
4.6335606 train/test split 2770 4.4299172 Preprocessor1_Model1
2.9518865 train/test split 2773 2.7876561 Preprocessor1_Model1
4.5204948 train/test split 2776 4.4657698 Preprocessor1_Model1
5.9854010 train/test split 2780 5.9035112 Preprocessor1_Model1
5.0922728 train/test split 2781 5.0275582 Preprocessor1_Model1
4.1334506 train/test split 2782 3.8300601 Preprocessor1_Model1
5.6029185 train/test split 2783 5.4925585 Preprocessor1_Model1
4.4891909 train/test split 2790 4.8331064 Preprocessor1_Model1
2.3753750 train/test split 2798 2.0320507 Preprocessor1_Model1
4.7947770 train/test split 2807 4.6779183 Preprocessor1_Model1
4.4712512 train/test split 2812 4.8358087 Preprocessor1_Model1
7.6260933 train/test split 2817 7.8189233 Preprocessor1_Model1
6.6692060 train/test split 2820 7.5702823 Preprocessor1_Model1
4.5527232 train/test split 2821 2.9924419 Preprocessor1_Model1
2.4907727 train/test split 2822 3.1734835 Preprocessor1_Model1
5.7833588 train/test split 2846 5.3905243 Preprocessor1_Model1
6.4047488 train/test split 2847 6.2017346 Preprocessor1_Model1
4.2409757 train/test split 2851 4.4227497 Preprocessor1_Model1
6.1332028 train/test split 2858 6.6341004 Preprocessor1_Model1
6.5593433 train/test split 2860 6.7272612 Preprocessor1_Model1
3.8969680 train/test split 2863 3.5343020 Preprocessor1_Model1
1.4529970 train/test split 2869 1.3214125 Preprocessor1_Model1
2.6363477 train/test split 2871 2.6458469 Preprocessor1_Model1
4.8841986 train/test split 2875 4.9876375 Preprocessor1_Model1
6.2558773 train/test split 2882 6.4878189 Preprocessor1_Model1
5.5202461 train/test split 2883 5.8648739 Preprocessor1_Model1
5.7072013 train/test split 2885 4.9929801 Preprocessor1_Model1
4.5625255 train/test split 2887 5.5518430 Preprocessor1_Model1
3.6918810 train/test split 2888 4.0199286 Preprocessor1_Model1
0.9750394 train/test split 2889 0.7534951 Preprocessor1_Model1
5.7037352 train/test split 2894 6.1626394 Preprocessor1_Model1
3.8190240 train/test split 2896 3.1856939 Preprocessor1_Model1
5.0309693 train/test split 2900 3.9141038 Preprocessor1_Model1
4.6378437 train/test split 2902 5.1186247 Preprocessor1_Model1
3.5370286 train/test split 2916 2.8239757 Preprocessor1_Model1
5.1130973 train/test split 2925 5.1017390 Preprocessor1_Model1
1.3567157 train/test split 2931 1.8101876 Preprocessor1_Model1
8.1144694 train/test split 2932 7.8138152 Preprocessor1_Model1
6.6905232 train/test split 2933 7.6459253 Preprocessor1_Model1
5.9114682 train/test split 2934 5.9034884 Preprocessor1_Model1
2.6194980 train/test split 2935 2.9499495 Preprocessor1_Model1
3.2308821 train/test split 2936 2.7703988 Preprocessor1_Model1
6.5521171 train/test split 2938 6.0905691 Preprocessor1_Model1
3.4907447 train/test split 2939 3.0915931 Preprocessor1_Model1
4.5578449 train/test split 2944 5.2538635 Preprocessor1_Model1
8.1509360 train/test split 2945 7.4579491 Preprocessor1_Model1
6.9811998 train/test split 2948 6.4262820 Preprocessor1_Model1
4.2286402 train/test split 2951 3.6407330 Preprocessor1_Model1
1.4097761 train/test split 2954 2.6541079 Preprocessor1_Model1
2.8880017 train/test split 2956 3.7691402 Preprocessor1_Model1
4.7696491 train/test split 2957 4.8004877 Preprocessor1_Model1
2.6375849 train/test split 2959 2.8544663 Preprocessor1_Model1
1.3259734 train/test split 2968 0.9677686 Preprocessor1_Model1
4.2978580 train/test split 2969 4.3442595 Preprocessor1_Model1
3.9522835 train/test split 2987 3.4894791 Preprocessor1_Model1
2.8768431 train/test split 2994 2.4993383 Preprocessor1_Model1
8.0297208 train/test split 2998 7.3718562 Preprocessor1_Model1
7.0713845 train/test split 2999 6.7521436 Preprocessor1_Model1
1.1597205 train/test split 3002 1.0145356 Preprocessor1_Model1
5.2981246 train/test split 3004 5.8900692 Preprocessor1_Model1
1.0558377 train/test split 3007 1.4272555 Preprocessor1_Model1
6.1367989 train/test split 3010 5.2144551 Preprocessor1_Model1
2.2160441 train/test split 3012 2.5125223 Preprocessor1_Model1
2.5815755 train/test split 3014 2.6770016 Preprocessor1_Model1
4.1735260 train/test split 3017 4.2961908 Preprocessor1_Model1
3.1175270 train/test split 3018 2.6455813 Preprocessor1_Model1
4.5443395 train/test split 3020 4.3499982 Preprocessor1_Model1
5.1603687 train/test split 3021 5.6855086 Preprocessor1_Model1
3.7178343 train/test split 3024 3.3348005 Preprocessor1_Model1
6.6075877 train/test split 3026 6.8846480 Preprocessor1_Model1
3.9796195 train/test split 3032 4.2644013 Preprocessor1_Model1
6.2517673 train/test split 3035 5.3535336 Preprocessor1_Model1
4.0849944 train/test split 3046 3.7323642 Preprocessor1_Model1
5.7669156 train/test split 3049 5.9001828 Preprocessor1_Model1
1.5690847 train/test split 3050 1.5500590 Preprocessor1_Model1
7.0473209 train/test split 3056 6.8811726 Preprocessor1_Model1
6.3669846 train/test split 3060 6.6597116 Preprocessor1_Model1
4.9814939 train/test split 3062 4.5210590 Preprocessor1_Model1
5.3351678 train/test split 3064 5.3494781 Preprocessor1_Model1
3.6967482 train/test split 3065 3.5521256 Preprocessor1_Model1
2.5942509 train/test split 3067 2.2162457 Preprocessor1_Model1
1.8687107 train/test split 3069 1.9334647 Preprocessor1_Model1
6.4176956 train/test split 3071 5.9629126 Preprocessor1_Model1
3.0269707 train/test split 3072 3.3463866 Preprocessor1_Model1
6.7026059 train/test split 3080 7.2598997 Preprocessor1_Model1
2.2971590 train/test split 3082 2.1975225 Preprocessor1_Model1
5.2292707 train/test split 3084 5.1365790 Preprocessor1_Model1
4.5092627 train/test split 3089 4.5224883 Preprocessor1_Model1
4.9603423 train/test split 3090 5.1794323 Preprocessor1_Model1
2.5002111 train/test split 3092 2.6528353 Preprocessor1_Model1
1.8186946 train/test split 3104 1.5458185 Preprocessor1_Model1
1.9936329 train/test split 3110 1.9782855 Preprocessor1_Model1
4.8180400 train/test split 3111 4.2613282 Preprocessor1_Model1
4.0032382 train/test split 3117 3.7589215 Preprocessor1_Model1
6.0976606 train/test split 3119 5.3223830 Preprocessor1_Model1
3.5486901 train/test split 3122 3.7107538 Preprocessor1_Model1
5.0654804 train/test split 3123 5.4125933 Preprocessor1_Model1
6.9166883 train/test split 3125 7.2067818 Preprocessor1_Model1
6.5111359 train/test split 3129 6.7817204 Preprocessor1_Model1
7.5209451 train/test split 3134 7.4136745 Preprocessor1_Model1
5.5327232 train/test split 3137 6.1078612 Preprocessor1_Model1
6.0562396 train/test split 3138 6.7612920 Preprocessor1_Model1
4.9282310 train/test split 3139 5.5063292 Preprocessor1_Model1
3.3546100 train/test split 3141 2.5364093 Preprocessor1_Model1
6.4043795 train/test split 3142 6.9220032 Preprocessor1_Model1
4.7271075 train/test split 3145 4.0763663 Preprocessor1_Model1
6.6330892 train/test split 3153 6.3332738 Preprocessor1_Model1
4.9386621 train/test split 3154 5.0296380 Preprocessor1_Model1
7.0652564 train/test split 3157 7.6514180 Preprocessor1_Model1
5.2126807 train/test split 3161 4.9468827 Preprocessor1_Model1
4.9846112 train/test split 3163 5.6330179 Preprocessor1_Model1
5.1978782 train/test split 3167 5.8558827 Preprocessor1_Model1
4.1425701 train/test split 3168 4.7264042 Preprocessor1_Model1
6.8470182 train/test split 3170 6.2463646 Preprocessor1_Model1
3.9910715 train/test split 3172 2.6021992 Preprocessor1_Model1
3.9563766 train/test split 3178 3.7067615 Preprocessor1_Model1
5.5663988 train/test split 3179 5.2231676 Preprocessor1_Model1
3.6231488 train/test split 3180 2.6369306 Preprocessor1_Model1
5.0009057 train/test split 3181 5.0277522 Preprocessor1_Model1
3.6111660 train/test split 3182 3.0180492 Preprocessor1_Model1
3.8604348 train/test split 3185 3.8380361 Preprocessor1_Model1
4.2398516 train/test split 3189 3.9291827 Preprocessor1_Model1
3.7846612 train/test split 3190 3.2815979 Preprocessor1_Model1
5.2229651 train/test split 3194 4.1832883 Preprocessor1_Model1
6.5983529 train/test split 3198 5.6281927 Preprocessor1_Model1
6.1413319 train/test split 3199 5.5949220 Preprocessor1_Model1
3.9023353 train/test split 3201 4.2516976 Preprocessor1_Model1
5.5357684 train/test split 3203 5.4769940 Preprocessor1_Model1
4.5948757 train/test split 3204 4.8653485 Preprocessor1_Model1
5.2810284 train/test split 3212 5.7356121 Preprocessor1_Model1
5.8189390 train/test split 3215 6.3629157 Preprocessor1_Model1
5.1016563 train/test split 3219 3.8721550 Preprocessor1_Model1
2.9852105 train/test split 3223 3.0321327 Preprocessor1_Model1
5.1150102 train/test split 3224 5.3088025 Preprocessor1_Model1
3.7784483 train/test split 3227 3.6232884 Preprocessor1_Model1
3.5072157 train/test split 3232 3.7942979 Preprocessor1_Model1
4.4223230 train/test split 3236 4.3776219 Preprocessor1_Model1
3.3268819 train/test split 3237 2.8547074 Preprocessor1_Model1
5.9776417 train/test split 3238 6.0187547 Preprocessor1_Model1
2.7144450 train/test split 3240 2.9429132 Preprocessor1_Model1
6.9079943 train/test split 3242 6.4836742 Preprocessor1_Model1
5.7268370 train/test split 3243 6.0090906 Preprocessor1_Model1
6.2454984 train/test split 3247 6.8951867 Preprocessor1_Model1
6.3716839 train/test split 3250 6.3723061 Preprocessor1_Model1
4.1397031 train/test split 3251 3.8599920 Preprocessor1_Model1
4.3940623 train/test split 3252 3.9718315 Preprocessor1_Model1
4.3005972 train/test split 3256 4.2331727 Preprocessor1_Model1
2.7233808 train/test split 3260 3.1431053 Preprocessor1_Model1
2.2460118 train/test split 3266 2.0557232 Preprocessor1_Model1
1.4163317 train/test split 3267 1.0717115 Preprocessor1_Model1
6.1311257 train/test split 3272 6.1662378 Preprocessor1_Model1
6.7615194 train/test split 3273 7.4612847 Preprocessor1_Model1
5.1008892 train/test split 3274 5.5964587 Preprocessor1_Model1
2.5673745 train/test split 3281 2.5026974 Preprocessor1_Model1
4.0553743 train/test split 3282 4.6275046 Preprocessor1_Model1
2.6400253 train/test split 3284 2.5758080 Preprocessor1_Model1
Show the code
set.seed(3234)
#| label: fig-final-eval
#| fig-cap: Model evaluation measured vs predicted


test_pred |> 
  janitor::clean_names() |> 
  slice_sample(n = 100000) |> 
  ggplot(aes(yield_tons_per_hectare, pred)) +
  geom_jitter(alpha = .4) +
  geom_abline(col = "red") +
  labs(
    x = "Measured",
    y = "Predicted",
    title = "Predicted vs Measured Crop Yield (tons per ha)"
  )

Show the code
crop_final_fit |> 
  extract_fit_engine() |> 
  plot(3)

crop_final_fit |> 
  extract_fit_engine(4) |> 
  plot(1)

crop_final_fit |> 
  extract_fit_engine() |> 
  plot(4)
(a)
(b)
(c)
Figure 5: Goodness-of-fit test for MARS -earth model

Variable importance

Show the code
vip(
  crop_final_fit |> 
    extract_fit_engine()
)
Figure 6: Variable importance plot of the mars model