Predicting Algeria’s Forest Fire Weather Index (FWI)

Machine Learning
Logistic Regression
Regularization
Author

Olamide Adu

Published

September 10, 2024

Introduction

This project is a recycle of the prediction of fire occurrence in Algeria’s forest with a little twist. Instead of predicting fire occurrence, this project will predict the forest Fire Weather Index (FWI). Also different from the former project is the algorithm used. The former project used logistic regression with a principal component analysis preprocessing to reduce multicollinearity between the features. This project uses a regularized regression to predict the FWI of the forest.

Objective

The objective of this project involve:

  • Developing a FWI model.
  • Evaluating which of the regularized regression will preform best. (significant difference in performance is not the goal but rather getting the best performance).

Data

Data used for this project is exactly the same as the data used in the prediction of fire occurrence project, check here for the data definition. To get more understanding of the data, and the correlation between the different variables, check the posts, as I will dive in to model development for this project.

The processed and clean data is already made available and will be imported. Prior that, we have to load the necessary library for this analysis.

Show the code
pacman::p_load(nanoparquet, tidymodels, knitr, ggthemr)
ggthemr(palette = "earth", layout = "minimal")
Show the code
algeria_ff <- read_parquet("data/algeria.parquet")

Modelling

We will dive to model development straight away. We begin with sharing the data, creating resamples and setting the model specification before feature engineering and finally model development. ## Data Sharing The data will be splitted to a 70-30 proportion. 70% for training and 30% for testing.

Show the code
set.seed(123)
algeria_split <-initial_split(algeria_ff, prop = .7, strata = fwi)
algeria_train <- training(algeria_split)

Due to the size of the data 243 rows, a bootstrap resampling technique will be employed.

Show the code
set.seed(123)
algeria_bstrap <- bootstraps(algeria_train, strata = fwi)

Model Specification

We do not know the penalty for to use for our regularized regression, so we tune this parameter. The best value for the elastic-net is also unknown and will also be tuned.

Show the code
lasso_spec <- linear_reg(
  penalty = tune(),
  mixture = 1
) |> 
  set_engine("glmnet")

ridge_spec <- linear_reg(
  penalty = tune(),
  mixture = 0
) |> 
  set_engine("glmnet")

elastic_spec <- linear_reg(
  penalty = tune(),
  mixture = tune()
) |> 
  set_engine("glmnet")

Feature engineering

Preprocessing steps carried before except using pca will be employed here.

Show the code
algeria_rec <- recipe(fwi ~ ., data = algeria_train) |> 
  step_zv(all_numeric_predictors()) |> 
  step_nzv(all_numeric_predictors()) |> 
  step_YeoJohnson(all_numeric_predictors()) |> 
  step_scale(all_numeric_predictors()) |> 
  step_dummy(all_factor_predictors())

algeria_rec
── Recipe ──────────────────────────────────────────────────────────────────────
── Inputs 
Number of variables by role
outcome:    1
predictor: 14
── Operations 
• Zero variance filter on: all_numeric_predictors()
• Sparse, unbalanced variable filter on: all_numeric_predictors()
• Yeo-Johnson transformation on: all_numeric_predictors()
• Scaling for: all_numeric_predictors()
• Dummy variables from: all_factor_predictors()

The data after undergoing feature engineering is shown in Table 1:

Show the code
set.seed(123)
algeria_rec |> 
  prep() |> 
  juice() |> 
  car::some() |> 
  kable()
Table 1: Data preview after preprocessing
day month temperature rh ws rain ffmc dmc dc isi bui fwi region_Sidi.Bel.Abbes classes_fire
1.9099765 6.257817 4.469877 5.018083 16.04237 1.5146337 0.6112248 1.971387 3.257687 1.004836 2.219341 0.5 0 0
3.5100906 8.045765 2.975905 3.822778 14.61728 0.9683845 0.9364749 1.666566 3.227303 1.068358 2.007790 0.5 1 0
1.7969550 6.257817 5.622383 3.605656 13.78430 1.8495797 1.3793852 2.404867 3.562018 1.187334 2.602155 0.8 0 0
3.0974426 5.363843 4.746365 3.822778 15.71108 0.0000000 2.6879614 3.413360 4.732499 2.802260 3.732665 10.6 0 1
0.7144441 6.257817 5.322644 3.968818 14.21285 0.0000000 2.5741665 2.375816 3.764466 2.406109 2.692231 4.9 0 1
1.0917983 7.151791 6.567699 3.249173 12.84074 0.0000000 2.7659263 2.826989 3.433657 2.499136 2.910182 5.9 1 1
3.6120029 6.257817 6.567699 3.178716 14.61728 0.0000000 3.0242252 4.049493 4.665000 3.067498 4.080263 14.5 1 1
1.7969550 7.151791 6.567699 2.159044 13.78430 0.0000000 3.4069902 3.716532 4.469620 3.403472 3.773189 15.7 1 1
2.1330093 8.045765 5.622383 2.423705 13.32829 0.0000000 3.5003297 3.885782 4.603991 3.450648 3.980076 17.5 1 1
2.5687041 8.045765 5.929822 1.773226 15.36427 0.0000000 3.4534197 3.794553 5.041329 3.724684 4.130098 21.6 1 1

Tune Grid

In the models specified earlier we have one to two parameters we have to tune. These are the parameters with tune() in front of them.

Show the code
set.seed(123)

tune_elastic <- extract_parameter_set_dials(elastic_spec) |> 
  grid_regular(
    levels = 25
  )

tune_lasso <- extract_parameter_set_dials(lasso_spec) |> 
  grid_regular(levels =  20)

tune_ridge <- extract_parameter_set_dials(ridge_spec) |> 
  grid_random(size = 20)

We set control to save prediction and the workflow.

Show the code
grid_control <-control_grid(
  save_pred = TRUE,
  save_workflow = TRUE
)

Workflow

A workflow object for each model specification will be made

Show the code
elastic_wf <- workflow() |> 
  add_recipe(algeria_rec) |> 
  add_model(elastic_spec)

lasso_wf <- workflow() |> 
  add_recipe(algeria_rec) |> 
  add_model(lasso_spec)

ridge_wf <- workflow() |> 
  add_recipe(algeria_rec) |> 
  add_model(ridge_spec)

Below is a breakdown of the process from model specification to feature engineering tied together.

Show the code
elastic_wf
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: linear_reg()

── Preprocessor ────────────────────────────────────────────────────────────────
5 Recipe Steps

• step_zv()
• step_nzv()
• step_YeoJohnson()
• step_scale()
• step_dummy()

── Model ───────────────────────────────────────────────────────────────────────
Linear Regression Model Specification (regression)

Main Arguments:
  penalty = tune()
  mixture = tune()

Computational engine: glmnet 

Tuning

Now we tune the parameter(s) of each models

Show the code
elastic_tune <- tune_grid(
  elastic_wf,
  resamples = algeria_bstrap,
  grid = tune_elastic,
  control = grid_control
)

lasso_tune <- tune_grid(
  lasso_wf,
  resamples = algeria_bstrap,
  grid = tune_lasso,
  control = grid_control
)

ridge_tune <- tune_grid(
  ridge_wf,
  resamples = algeria_bstrap,
  grid = tune_ridge,
  control = grid_control
)

Tune Performance

Let’s see the performance of the regularized parameters.

Show the code
elastic_tune |> 
  collect_metrics() |>
  mutate(
    model = "elastic"
  ) |> 
  bind_rows(
    lasso_tune |> 
      collect_metrics() |> 
      mutate(
        model = "lasso"
      )
  ) |> 
  bind_rows(
    ridge_tune |> 
      collect_metrics() |> 
      mutate(
        model = "ridge"
      )
  ) |> 
  ggplot(aes(penalty, mean, color = model)) +
  geom_point() +
  geom_smooth(
    se = FALSE,
    method = "loess",
    formula = "y ~ x"
  ) + 
  facet_wrap(~.metric, nrow = 2, scales = "free") +
  theme_bw()
Figure 1: Regularization Performance

Final workflow

As shown in Figure 1, the elastic-net regularized model performed the best. We can pick the best model from this and get the final model.

Show the code
best_tune <- elastic_tune |> 
  select_best(metric = "rmse")

final_wf <- finalize_workflow(
  x = elastic_wf,
  parameters = best_tune
)  

final_wf
══ Workflow ════════════════════════════════════════════════════════════════════
Preprocessor: Recipe
Model: linear_reg()

── Preprocessor ────────────────────────────────────────────────────────────────
5 Recipe Steps

• step_zv()
• step_nzv()
• step_YeoJohnson()
• step_scale()
• step_dummy()

── Model ───────────────────────────────────────────────────────────────────────
Linear Regression Model Specification (regression)

Main Arguments:
  penalty = 0.0562341325190349
  mixture = 0.0895833333333333

Computational engine: glmnet 

Feature Importance

Above @final-fw we parameters fitted accordingly and can note that the tune parameter in Section 2.4 has been replace accordingly. Before We finally fit the model to the whole of the data. we can investigate to see the most important variables

Show the code
library(vip)

Attaching package: 'vip'
The following object is masked from 'package:utils':

    vi
Show the code
vip(final_wf |> 
      fit(algeria_train))

Final Fit

Show the code
last_fit <- final_wf |> 
  last_fit(split = algeria_split)

Figure 2 shows how the penalty, aka 𝜆 from 0 to infinity.

Show the code
additional_colors <- c("#af4242", "#535364", "#FFC300", "#e09263", "#123367")
set_swatch(c(unique(swatch()), additional_colors))


extract_fit_parsnip(last_fit) |> 
  autoplot() +
  labs(
    x = "Lambda",
    y = "Coefficients"
  ) +
  theme_bw()
Figure 2: Coefficients for our elastic-net regression model as 𝜆 grows from 0 → ∞

Model Eval

Show the code
last_fit |> 
  collect_metrics() |> 
  kable()
.metric .estimator .estimate .config
rmse standard 3.3764246 Preprocessor1_Model1
rsq standard 0.8563439 Preprocessor1_Model1

With a RMSE of 3.38 the model prediction of the forest fire weather index is reliable as the model can also explain about 86% of the whole data.

Conclusion

This project compared three regularized models, and used it as an alternative of creating a model without a pca preprocessing step, as regularized models penalize the coefficient of features pushing them towards zero or making them exactly zero (lasso regression). The model helped minimize the impact of multicollinearity existing within the data.

Reflection

I tried using workflow_map() to tune the three models together combined in a workflow_set(). When metrics where collected to evaluate the models, the tuning parameters were absent and instead only results where returned. You can run the code below to confirm this.

Show the code
algerian_wf_set <- workflow_set(
  preproc = list(rec = algeria_rec),
  models = list(
    lasso = lasso_spec,
    ridge = ridge_spec,
    elastic = elastic_spec
  ),
  cross = TRUE
 ) |>
  option_add(
     id = "rec_elastic",
     grid = tune_elastic
  ) |> 
  option_add(
    id = "rec_lasso",
    grid = tune_lasso
  ) |> 
  option_add(
    id = "rec_ridge",
    grid = tune_ridge
  )

tune_res <- workflow_map(
  algerian_wf_set,
  resamples = algeria_bstrap,
  verbose = TRUE,
  seed = 123,
  fn = "tune_grid",
  grid = 20,
  control = grid_control
)

tune_res |> 
  collect_metrics()